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The operation of business insurance companies, based on assuming risks of different profiles, is accompanied
by fluctuations in the business environment. The complexity of predicting a financial effect for claims in
non-life insurance lies in the structure of insurers’ liabilities, whose amount cannot be determined at the
time of payment of the premium. By analyzing the key insurance processes, risk theory focuses on modeling
claims as the financial consequences of unforeseen events. In addition, it provides the answer as to how
much of a premium to charge in order to avoid bankruptcy, which makes it a complex and topical research
area. The paper presents the main results of the collective risk model for the key business processes of non-
life insurance companies: the claim number process and the claim amount process. In risk theory, these are
treated as stochastic processes, which offers a wide range of possibilities for the modeling and simulation of
specific business problems.
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INTRODUCTION

Risk avoidance has generated the establishment and
operation of insurance companies which provide
their clients with opportunities to disperse and
minimize their losses. The insured transfer their risks
to insurers who, by forming a large enough group
of related risks, reduce the loss of each insured by
charging an appropriate premium. The basic source
of all non-life insurers” dilemmas lies in the fact that
the premiums are paid prior to the occurrence of
any adverse events. It is therefore necessary to assess
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the likelihood of realization, as well as the monetary
value of the loss that must be compensated for. The
theory of probability and statistics allows insurers to
see unfortunate events as phenomena that, because
of certain regularities, can be predicted and modeled
(Embrechts & Kliippelberg, 1993). The application of
the risk theory in non-life insurance is an even more
powerful tool for analyzing and defining very complex
business risks. The acceptance of a variety of risks has
framed three basic questions that non-life actuaries,
above all others, must focus their attention on in order
to adequately protect their customers:

* How much of accepted risks can be realized in a
specific time, or how many compensation requests
can be expected on the basis of the collected
insurance policies?
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*  What amount of money should be provided for the
payment of claims received, i.e. what is the average
expected amount of a claim?

* How much of a premium to charge to the insured
in order to absorb the claim and provide income to
insurance companies?

The application of the risk theory in general insurance
is accompanied by criticisms of its limited practical
importance in the business world, so that it has long
been ignored and theoretically and mathematically
developed mainly by Scandinavian scientists. Today,
however, it is a major research challenge for many
mathematicians and actuaries due to the broad
framework and the logical context within which it is
possible to simulate natural fluctuations present in
real business processes. Solvency II, a new updated set
of regulatory requirements for insurance companies
operating in the European Union, requires the
complete treatment and measurement of a risk-margin
based on risk, which has promoted the application of
the risk theory. Apart from the traditional methods,
there is now a need for a new dynamic approach based
on the stochastic concept of the realization of adverse
events.

Insurers are generally interested in total payments
that may follow from the insurance portfolio. If the
present value of the total potential payout is seen as
the sum of individual payments, we are talking about
the individual risk model. The second model, which
observes the aggregate amount of claims arising from
all of the collected policies, is known as the collective
risk model. Although more recent, it has significantly
outperformed the older, individual, model because of
its applicability.

This paper analyzes the modeling of the key processes
in the operation of insurance companies: the claim
number process and the claim amount process.
The aim of this paper is to present the advantages
and disadvantages of the collective risk theory
in the analysis of this problem, pointing out the
possibility of their application and directions for
further development. Therefore, the key hypothesis
considered in the paper is: the risk theory, although
not very applicable in practical work, provides a broad
framework for monitoring, analyzing and predicting a

number of high-risk situations and provides guidance
for mitigating and overcoming the problems that may
arise.

Starting from the defined object and purpose, the
paper will first present the general model of the risk
theory in general insurance, and then analyze the
application of Poisson process and its modification
in the claim number process. The integration of this
processes with the process of the total amount of paid
claims makes the research area very complex, but
predominant when setting up the basic principles of
quantifying the premium.

COLLECTIVE RISK MODEL

Mathematical models in the theory of non-life
insurance analyze claims for damages to provide an
answer as to how much premium to charge in order
to avoid bankruptcy. Claims incoming to an insurance
company can be treated as random variables reflecting
the collection of the adverse outcomes realization of
insured events (claims) on a set of real numbers (the
monetary payoff amount) or as mapping X: Q — R,
where Q is the set of elementary events and R is the
set of real numbers. The manner and probability of the
occurrence of claims or monetary payments represents
the probability distribution of these random variables.
Every random variable may be associated the
distribution function, Fy, to, which does not describe
the actual outcome of the random variable X, but rather
tells us how the possible values of X are distributed.
Function Fy (x): R —[0,1], defined with

Fy (x):P(u)eQ|X((o)£ x)zP(XSx), forx € R,
is the distribution function of random variable X and
represents a probability that random variable X should
take values less than or equal to x. In the context of
insurance, if a random variable is the amount of the
claim of an insured, the distribution function is a
probability that the total amount of insured damage
observed will be less than or equal to the fixed amount
x. For a continuous random variable, the distribution

X
functionis Fy (x)=P(X <x)= J‘ g(x)dx, xeR

—00
where g(x) is the probability density function. The
most important numerical characteristics of random
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variables are obtained by using the expected value
and variance. The expected value or expectation of a

n
discrete random variableis E(X)=) x;-p; , while
i=l

+00
the continuous random variable £ (X )= I xg (x)dx.

—00
The variance is often used as an indicator of the
homogeneity of a population or a sample. For a discrete
random variable, the variance is

2 .
V“”(X):G :E(X_E(X))2 , 50 it is a measure of
the deviation of a random variable from its expected

value. For a continuous random variable,
+00

o’ = j (x—E(X))2 -g(x)dx .

The E?)Oncept of a random variable is independent
of time. However, many business processes are to
be analyzed and their implementation monitored
at random times, so it is necessary that the time
component should be included. Random variable
X, whose implementation is monitored in time, is
denoted by X; or X(t). If 7 c R is a set of time, then
X;is determined for every a certain family of random
variables, which defines the stochastic process. A
stochastic process X = {X;, t € R} can be treated as
a function of two variables and defined as X: T*Q —
K, where K is the set of states, a set containing all the
values of the observed process. For a selected time
t € T and anelementary event o € Q, the realization of
the process is denoted by X (t, w). Therefore, if the time
is fixed, then the function w — X(t,w) is the random
variable describing the process of implementation in a
future time t, whereas if the event is fixed ® € Q, then
the function t — X(t,0) describes the implementation
of the process X over time. This time function is the
realization or trajectory of the stochastic process.
Moreover, if the set T is countable, there is a discrete
random process or a series of random variables,
otherwise there is a continuous process.

For a process to model, it is necessary that realistic
assumptions  faithfully  describing the basic
characteristics of this problem be introduced, as well
as such that can mathematically be formulated while
their characteristics and implications can easily be
proved. “In the collective risk model, one starts from
the following hypotheses (Ramasubramanian, 2005, 2):

1. The total number of claims, B, received at a time,
is a random variable. Claims arrive at an insurance
company in times {Ti}, valid for 0< T1 < T, < ...,
and they are claims arrival times;

2. Any claim, arrived in time Ti induces the payment
of damages X;, or an amount of the claim. Sequence
{Xi} is a sequence of nonnegative, independent
identically distributed random variables (i.i.d.
random variables);

3. The claim size process {X;} and the time of
maturity {Ti} are independent of each other. The
process size and the claims number, {X;} and B,
are also independent.”

The two most important processes accompanying the
process of business insurers are the claims number
process and the total claim amount process. As both
processes are followed in time, they are stochastic
processes. In addition, the claims number process, i.e.
the number of claims incurred, is defined:

B(t)zmax{iZO:]} St} )

and represents the number of claims received at time
t > 0, while the process of the total amount of claims
paid is
B(t)
Z(1)=X) +.t Xy = 3, X;, 120, )
i=1
As the deterministic index n of the partial sum
Z, = X; + Xy +..+ X, is replaced with a random
variable B(t), the process Z = (Z (t) 12 O) is a random
process of partial sums, often referred to as the
compounded or collective process.

MODELING THE NUMBER OF CLAIMS

The Poisson process, introduced in F. Lundberg
(1903) as a model for the claim number process

{B (t )51 2 0} , where B(t) is a random variable, has
the central and dominant place in non-life insurance
mathematics, in the collective risk theory in particular.

According to the classical definition of the probability
theory, an integer random variable Y is said to have a
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k
Poisson distribution if: P(Y =k)=e™ L

k!
ke{0,1,2..} and for A > 0. The Poisson random
variable is used as a model for the number of phone
calls per unit of time, the number of cars and buses
that pass through a point per unit of time, the number
of users who accessed a web site, the number of
radioactive particles per unit of time, and so on.
It has a very rare, but very useful property that
E(Y) =var(Y) =\

, for

The Poisson process monitors the occurrence of an
event over time and the moments in which the event
occurred, so that it has widely been applied in the
modeling of rare events or events for which there is no
more than one possible realization in a short period
of time. “The Poisson process is a random process,
defined on a set of time, as a family of random variables

{B (t) teT , where there is set T = [0, + ), if the
following is fulfilled (Ramasubramanian, 2005, 3):

(1) B(t) is a non-negative integer random variable
which is true B(0)=0, V¢ >0, which means that
there is no claim at time 7 =0;

2 {B (1):1> 0} is a non-decreasing process, ie. if
0 <s <, then B(t) < B(s), where B(t) - B(s) denotes
the number of claims received in the time interval

st

3) {B(r):t>0} has independent increments such
that for 0 < ¢ <t, <... <t, <o number of
claims received in the disjoint intervals B(t),
B(ty) - B(ty), ......., B(t,) - B(tn-1), forn=1,2, ..
are independent random variables;

(4) a probability of the arrival of a certain number of
claims at a time interval depends only on the length
of the interval, so that the claim number process
has stationary increments, i.e. for 0 <s < ¢ and 4 >
0, independent random variables B(t) - B(s) and
B(t+h) - B(s+h) have the same distribution;

(5) a probability of the arrival of two or more claims
in a particular time interval is negligibly low, i..
P(B(h)>2) = o(h), ie. P(B(t+h) — B(t) > 2)
= o(h), where o(h) is an infinitely small size

with the property lzm ( )

(6) in a very short time, a probability of the arrival
of a request is approximately proportional to the
length of the interval, so there is a A >0 such that
P(B(h)=1) =1h + o(h), when — (. Number A
is the claim arrival rate.”

Although the Poisson process is not the most realistic
process for the claim number process due to its many
attractive and applicable properties developed and
detected over several decades, it is a reference point
in modeling. The limitation of the standard Poisson
process can be reduced and the models expanded by
various modifications of the standard Poisson process,
analyzed in detail by J. F. C. Kingman (1993). Thus, for
modeling the claims number process, there are two,
much broader and more realistic, other processes that
appear: the renewal process and the mixed Poisson
process.

“For the formulation and mathematical modeling of
the claims number process, we start from the following
assumptions, which are both natural and necessary
(Minkowa, 2010, 31):

* B(t) >0
* B(t) is the integer
e (<s<t thenB(?) <B(s),

* B(t) - B(s), for s <t, is the number of claims
received in the interval (s, t].”

The definition of the Poisson process implies that,
for each stochastic process, which includes the claim
number process, {B(t) t>0} fors>0, k=0,1,2,.

is valid:
P(B(t+s)—B(s)=i)=
:P(B(t)zk)z%e‘“ &)

or the claim number process is a homogeneous Poisson
process, with the rate of the arrival of claim A, where
M is a constant. The proof of this result and different
approaches performing it can be found in the works of
many authors, such as N. L. Bowers et al (1997), C. T.
Daykin et al (1994), S. Klugman et al (1998).

For the claim number process, from the aspect of
insurance, the time between the arrivals of two
consecutive claims is also important. If the arrival time
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of the n-th claim or the waiting time of the n-th claim
is defined by:

T,=inf{4=0:B(t)=n} , n=12.,Ty=10, (4

it can be assigned a series of time between two
successive claims A;, defined by 4; = T; — T;_;.
Analogously to these definitions, it follows

Vs : {Tl >S}={B(s)=0} (5)
where
P(4>5)=P(B(s)=0)=¢ (6)

Inductively, it can be seen that, for the Poisson process

{B (t).'tZO} with a growth rate A, the random
variables 4; are independent random variables,
exponentially distributed, with parameter A, ie

A €(1), so that E(Ai):%, Vin>0 .

AsT,=A4;+A4,+ ... + A, is the sum of random
variables with exponential distribution, it means that
the arrival time of the n-th claim 7}, has a gamma
distribution, T,: I"(n,X) (Rolski et al, 1999).

One of the key characteristics of Poisson processes

{B (1):1> 0} is that the time between the arrivals
of two successive claims is a random variable with
an exponential distribution with rate A. Another

important feature of the process {B (t):1= O}is that

these times are independent. These two features
provide us another way of generalizing the Poisson
process. Specifically, we can assume that nonnegative,
independent random variables 4; with the same
distribution can have whatever, either a discrete or an
absolutely continuous distribution. This assumption
leads us to the renewal process (Asmussen, 2000),
which provides greater flexibility in choosing a time
schedule for 4;. Unlike the Poisson process, where
B(t) has a Poisson distribution for each t, in the
renewal process, this property does not apply, so the
distribution for B(t) is generally not known, and the
determination of the probability of the event B (?)=n is
reduced to the determination of the expectation of the
random variable B(#) (Panjer & Willmot, 1992).

Also, as for the arrival time of the n-th claims

n
T,= ZAI- , it holds that:
i=1

T, <s < B(t)=n @)
In general, it is difficult to determine the distribution
for T, but we know that, if 4;: €(X) then T),: I'(n, )
and if 4;: Poi(L) then T),: Poi(n, ). Studies by many
scientists in the field of the renewal process (Kling &
Goovaerts, 1993) have led to a powerful mathematical
theory — the renewal theory, which allows you to very
precisely determine the expected number of requests
E(B(t)) for a large ¢. According to the strict law of
large numbers, if the expectation of the time of the
arrivals of two successive claims E(4;) = L1 finally,
then

_ B(1)

A ®)
Also, according to the elementary renewal theorem,
the following applies:

E(B(¢
lim (—()) =\ )
t—w t
The most accurate information about the pending
arrival times of claims is given in Blackwell’s renewal

theorem, according to which
E(B(t,t+h])—> M, t >0 (10)

So, the expected number of renewals per interval
(t, t+h], for a sufficiently large ¢, is proportional to the
length of the interval and independent of ¢.

The basic premise that the average rate of claim
occurrence is constant is not realistic since the claim
arrival is often dependent on the weather. Looking at
the parameter A as a function of time ¢, the model of
a homogeneous Poisson process can be extended to a
non-homogeneous Poisson process. It also starts with
a zero, has independent increments for which it is true
that for 0 <s <1, increment B(¢) - B(s) is Poisson

t
distributed with the parameter I A(y)dy. Furthermo-
‘

N
re, unction u(t)= J.X(y)dyis a function of the mean
0
value of a non-homogeneous Poisson process, for
some non-negative measurable function A. If the
function of the mean value is linear, i.e. u(¢) = At, it
is a homogeneous Poisson process; otherwise it is a
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non-homogeneous one. By introducing the intensity
function A(¢), the arrival process can be monitored and
modeled according to seasonal trends as well. If claims
come from heterogeneous insured groups, the arrival
claim rate varies from one policy to another, so that
A(t) can be viewed as a random variable A(¢), V ¢ > 0.

The set {A (1).t= 0} is a stochastic process and
therefore, the process {B (1):1= 0} is a double sto-
chastic Poisson process. Treating the A as a random
variable independent of time, this stochastic process

{B (¢):t> 0} is a mixed Poisson process, which
is an even more powerful generalization of general
Poisson processes. The mixed Poisson process loses
some properties of the Poisson process (increments
are mutually dependent, the distribution for B(?) in
general is not Poisson’s), but it provides many more
choices than the trajectories of the Poisson process and
the renewal process (Grandell, 1997).

MODELING THE TOTAL CLAIM
AMOUNT PROCESS

Analyzing the claims process is extended when the
consideration includes not just the number of the
claims received but the size of the claims demands
induce, too. The sum of individual claims or the
aggregate amount of the claims is a key problem,
both in practice and in theoretical discussion. In fact,
as the number of claims and the amount of the claim
are stochastic variables, there is a double stochastic
model of the aggregate amount of claims. Depending
on the selection of the claim number process B, there
are different models for the total claim amount process
until the moment of time t:

B(1)
Z(t)=X1+....+XN(t): ;X,-’tzo (11)

“One of the most popular and useful models in non-life
insurance mathematics is Cramer-Lundberg’s model
(Cramer, 1955), which combines the claim amount
and the arrival time, with the following assumptions
(Mikosch, 2009, 18):

o The claim number process B(r)=max{i>0.7; <t}

is a homogeneous Poisson process with rate

A >0, in which claims are realized in arrival times

e The claim received at the time T; induces the
payment of damage X;. Sequence {T;} is a sequence
of nonnegative, independent random variables
with the same distribution function;

* Sequences {X;} and {T;} are mutually independent.”

If we consider that the discounted sum i.e. the present
value of the cumulative amount of claims in the time
interval [0, t]:
B(r)
Zo(t)z Ze_Vin,tZO (12
i=1

where 7 > 0 is the interest rate, in Cramer-Lundberg’s
model, the expected amount necessary for settling the
claims received in the observed time interval is

B) . 1,
El Y e |=a— (- Y E(X)) (13)
i=1 r
Insurers are generally interested in the order of the
magnitude of Z(t), and consequently in the distribution
functions for Z(¢). Since determining the distribution
for Z(t) is a very complicated problem, the solution
lies in a simulation model and in obtaining rough
estimates of the mean and the variance of Z(¢).

The expectation of the total amount of paid claims
indicates its average size. Assuming independence
between X; and B, if E(B(t)) and E(X) are final, it
can easily be obtained that:

B(t)
E(Z(t))=E E{ § Xi|B(t)] =
=E(B(r)EX;)=E(B(1))E(X}) (14)

As in Cramer-Lundberg’s model the process B(t) is a
homogeneous Poisson process, then E(B(¢)) = At,
where L is the intensity rate of a homogeneous Poisson
process, so that from (14) we obtain:

E(Z(1)) = ME(X}) (15)

To have more complete information about the
distribution of Z(¢), we should combine information
about the expectation with the variance Var(Z(t)), for
which the following is valid (Mikosch, 2004):
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Var(Z(y) = E(B)Var(X)) +
+ Var(B(1))(E(X)))? (16)

As in Cramer-Lundberg’s model it holds that
E(B(t)) =Var(B(t)) =\t, we obtain:

Var(Z(t)) = ME(X{?) (17)

Yet another important model for the process {Z(t) : ¢
> 0} was introduced by Sparre-Andersen (Andersen,
1957) and its implications have been studied by many
authors (Sharif & Panjer, 1995; Genest et al, 2003),

for whom the process {B (¢):12 0} is a renewal process.
In the renewal model, however, the determination of
the estimates of expectations and variances is difficult
and does not give such concrete results. We have seen
that, according to the strict law of large numbers, if
the expectation of the arrival times of two consecutive

claims £(4;) = A1 <, then M_))L , when

t— 0. t

This means that:
E(Zt) = ME(X)(1+0(1)), t—x (18)
and

Var(Z(t)) = At[Var(X,) + Var(4,)-
AM(E(X1))%](1+0(1)) 19

Based on these results, we find that the expectation
and variance asymptotically grow almost linearly as a
function of time ¢. This information can be very useful
in the practical determination of premiums sufficient
for the settlement of losses, the size of Z(%).

PREMIUM CALCULATION PRINCIPLES

The amount of the money the insured pays the insurer,
as a compensation for risk, is a premium. Risks and
a premium are closely related to each other since a
premium amount is determined by an average size
of a risk, whose every change must be reflected in the
amount of such a premium. Looking at a premium as
a monetary payment from the insurer, in the context
of the above processes, it is obvious that an insurance
company will be operating at a loss if a premium
is less than the expected amount of payments i.e. if

p(t) < Z(t). As we have obtained in previous
arguments that E(Z(t)) = AE(X;)(I+o(1)),
t — oo, it is logical to determine a premium so that:

p(1) = ME(X))(1+p)

where p is a positive constant and represents safety
loading or a charge for security.

(20)

In the risk theory, there are principles which all
premiums p () should satisfy, known as the premium
principles. To determine a premium, as the mapping of
uncertain future losses onto their financial equivalent,
actuaries have developed a number of methods for the
determination of the premium principles (Albers, 1999;
Dickson, 1991; Landsman et al, 2001), the following
ones being basic:

o The principle of net premium is a basic principle,
according to which p(?) = E(Z(t)). It does not
include safety loading, because actuaries often
assume that there is practically no risk if the
insurer sells enough of identically distributed and
independent policies;

¢ The principle of the expected value is based on the
previous one, but incorporates proportional safety
loading. According to this principle, p(¢) = (1+p)
E(Z(t)) for some p > 0. This principle is generally
used in life insurance. The application of this
principle in non-life insurance is limited due to a
high heterogeneity of accepted risks;

 The principle of variance is based on the assumption
that p(t) = E(Z(t)) + oVar(Z(t)), for some
o > 0, in which a safety margin is proportional to
the variance of expected losses;

 The principle of standard deviation, also based on
the net premium principle, is often used in non-life
insurance. According to this principle, the expected
value of a loss must be covered by a premium
including safety loading, which is proportional to
the standard deviation of the expected damage, i.e.

p(t)zE(Z(t))+ a,/Var(Z(t) , for a > 0. Due to

its linearity when it comes to proportional changes
in claims, this principle is mostly used in property
and casualty insurance.
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CONCLUSION

Insurance companies are institutions absorbing
undesirable effects of their users’ risks. Due to the
influence of political and legal as well as social and
climatic factors, rapid changes in the business and
economic environment require a comprehensive
and dynamic risk treatment, especially in non-life
insurance. Therefore, H. Cramer said that “the goal
of risk theory is to provide a mathematical analysis
of the fluctuations in the insurance business and to
suggest various means of protection against their
adverse effects” (Cramer, 1930, 7). The oldest approach
to this problem is the individual-risk theory. It
observes individual insurance policies, with different
characteristics and risk profiles, so that the overall risk
of doing business is obtained via the summing of all
the claims arising from the entire portfolio of insurance
policies. However, the claims arise randomly, so the
risk process is a stochastic process. Thus, the collective
risk model, based on the application of stochastic
processes in insurance, has a very important role in
the development of academic actuarial science. In this
model, claims are treated aggregately, at the level of
the portfolio as a whole. Although the risk process is
considered as one of the simpler forms of stochastic
processes, there is still much to do to have it applied.

The mathematical foundation has applied some
necessary, however unrealistic, assumptions in the
model construction and development for both the
claim number process and the total amount of claims
paid process. Despite their broad significance, the
main disadvantages and limitations of theoretical
considerations pertain to the determination of the
distribution function which realistically reflects the
statistics of insurers. The executed simulations of the
proposed model use some of the known distribution
functions, which can almost never represent insurers’
portfolio adequately. Today, a large number of papers
focus on the determination of the general distribution
functions, which will increase the correspondence of
the obtained results with a reality (Cossette et al, 2002;
Embrechts et al, 1997, Kaas et al, 2001). Moreover, a
lot of work is focused on the construction of a model
which will include inflation in determining the total
amount of the compensation paid. In order to have it
practically applied, which is the direction in which

this theory is to further develop, it is necessary that
the fact that claims are not paid at the same time
or immediately after the arrival of a request to an
insurance company should be taken into account.
Also, special attention should be paid to the costs
accompanying the treatment and settlement of claims.

The main results of the collective risk theory, which
are presented in the paper, are indicative of a wide
range of the modifications, modeling and simulations
of events that may occur. The main disadvantage of
theoretical considerations, including this paper, is
their currently limited applicability in the practical
business environment. However, as the range of the
risk of non-life insurers in an increasingly turbulent
business environment is in a constant increase, real
consequences can no longer be predicted by using
only business statistics. It is indisputable that the
collective risk model represents a broad scientific field,
engaging numerous scientists producing growingly
concrete results when the convergence of theory and
concrete business problems are concerned. Hence,
the combination of visualization and stochastic
actuarial experience is a strong mechanism to solve an
increasingly complex insurers’ risk.
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