
Economic Horizons, May - August 2013, Volume 15, Number 2,  167 - 175        	 © Faculty of Economics, University of Kragujevac
UDC: 33      eISSN  2217-9232  	 www. ekfak.kg.ac.rs

Review paper
UDC: 005.334:368.025.6 ; 347.426.6

doi: 10.5937/ekonhor1302163D

*  	Correspondence to:  Z. Djuric, Faculty of Economics, University 
of Kragujevac, Dj. Pucara 3,  34000 Kragujevac,  Serbia; 

	 e-mail:  zdjuric@kg.ac.rs

INTRODUCTION

Risk avoidance has generated the establishment and 
operation of insurance companies which provide 
their clients with opportunities to disperse and 
minimize their losses. The insured transfer their risks 
to insurers who, by forming a large enough group 
of related risks, reduce the loss of each insured by 
charging an appropriate premium. The basic source 
of all non-life insurers’ dilemmas lies in the fact that 
the premiums are paid prior to the occurrence of 
any adverse events. It is therefore necessary to assess 

the likelihood of realization, as well as the monetary 
value of the loss that must be compensated for. The 
theory of probability and statistics allows insurers to 
see unfortunate events as phenomena that, because 
of certain regularities, can be predicted and modeled 
(Embrechts & Klüppelberg, 1993). The application of 
the risk theory in non-life insurance is an even more 
powerful tool for analyzing and defining very complex 
business risks. The acceptance of a variety of risks has 
framed three basic questions that non-life actuaries, 
above all others, must focus their attention on in order 
to adequately protect their customers:

•	 How much of accepted risks can be realized in a 
specific time, or how many compensation requests 
can be expected on the basis of the collected 
insurance policies?
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•	 What amount of money should be provided for the 
payment of claims received, i.e. what is the average 
expected amount of a claim?

•	 How much of a premium to charge to the insured 
in order to absorb the claim and provide income to 
insurance companies?

The application of the risk theory in general insurance 
is accompanied by criticisms of its limited practical 
importance in the business world, so that it has long 
been ignored and theoretically and mathematically 
developed mainly by Scandinavian scientists. Today, 
however, it is a major research challenge for many 
mathematicians and actuaries due to the broad 
framework and the logical context within which it is 
possible to simulate natural fluctuations present in 
real business processes. Solvency II, a new updated set 
of regulatory requirements for insurance companies 
operating in the European Union, requires the 
complete treatment and measurement of a risk-margin 
based on risk, which has promoted the application of 
the risk theory. Apart from the traditional methods, 
there is now a need for a new dynamic approach based 
on the stochastic concept of the realization of adverse 
events.

Insurers are generally interested in total payments 
that may follow from the insurance portfolio. If the 
present value of the total potential payout is seen as 
the sum of individual payments, we are talking about 
the individual risk model. The second model, which 
observes the aggregate amount of claims arising from 
all of the collected policies, is known as the collective 
risk model. Although more recent, it has significantly 
outperformed the older, individual, model because of 
its applicability.

This paper analyzes the modeling of the key processes 
in the operation of insurance companies: the claim 
number process and the claim amount process. 
The aim of this paper is to present the advantages 
and disadvantages of the collective risk theory 
in the analysis of this problem, pointing out the 
possibility of their application and directions for 
further development. Therefore, the key hypothesis 
considered in the paper is: the risk theory, although 
not very applicable in practical work, provides a broad 
framework for monitoring, analyzing and predicting a 

number of high-risk situations and provides guidance 
for mitigating and overcoming the problems that may 
arise.

Starting from the defined object and purpose, the 
paper will first present the general model of the risk 
theory in general insurance, and then analyze the 
application of Poisson process and its modification 
in the claim number process. The integration of this 
processes with the process of the total amount of paid 
claims makes the research area very complex, but 
predominant when setting up the basic principles of 
quantifying the premium.

COLLECTIVE RISK MODEL

Mathematical models in the theory of non-life 
insurance analyze claims for damages to provide an 
answer as to how much premium to charge in order 
to avoid bankruptcy. Claims incoming to an insurance 
company can be treated as random variables reflecting 
the collection of the adverse outcomes realization of 
insured events (claims) on a set of real numbers (the 
monetary payoff amount) or as mapping X: Ω → R, 
where Ω is the set of elementary events and R  is the 
set of real numbers. The manner and probability of the 
occurrence of claims or monetary payments represents 
the probability distribution of these random variables. 
Every random variable may be associated the 
distribution function, FX, to, which does not describe 
the actual outcome of the random variable X, but rather 
tells us how the possible values of X are distributed. 
Function	 , defined with

	 for x  ∈ R , 
is the distribution function of random variable  X and 
represents a probability that random variable X should 
take values less than or equal to x . In the context of 
insurance, if a random variable is the amount of the 
claim of an insured, the distribution function is a 
probability that the total amount of insured damage 
observed will be less than or equal to the fixed amount 
x . For a continuous random variable, the distribution

function is

where g(x) is the probability density function. The 
most important numerical characteristics of random 
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variables are obtained by using the expected value 
and variance. The expected value or expectation of a

discrete random variable is	 , while

the continuous random variable	 . 

The variance is often used as an indicator of the 
homogeneity of a population or a sample. For a discrete 
random variable, the variance is  

	 , so it is a measure of 
the deviation of a random variable from its expected 
value. For a continuous random variable, 

	 .

The concept of a random variable is independent 
of time. However, many business processes are to 
be analyzed and their implementation monitored 
at random times, so it is necessary that the time 
component should be included. Random variable 
X, whose implementation is monitored in time, is 
denoted by Xt or X(t). If T  ⊂ R   is a set of time, then 
Xt is determined for every   a certain family of random 
variables, which defines the stochastic process. A 
stochastic process X  =  {Xt,  t  ∈ R} can be treated as 
a function of two variables and defined as X: T ˣ Ω → 

K, where K is the set of states, a set containing all the 
values of the observed process. For a selected time 
t  ∈ T  and an elementary event ω  ∈ Ω , the realization of 
the process is denoted by X (t, ω). Therefore, if the time 
is fixed, then the function ω →  X(t,ω) is the random 
variable describing the process of implementation in a 
future time t, whereas if the event is fixed ω  ∈ Ω , then 
the function t  →  X(t ,ω)  describes the implementation 
of the process X over time. This time function is the 
realization or trajectory of the stochastic process. 
Moreover, if the set T is countable, there is a discrete 
random process or a series of random variables, 
otherwise there is a continuous process.

For a process to model, it is necessary that realistic 
assumptions faithfully describing the basic 
characteristics of this problem be introduced, as well 
as such that can mathematically be formulated while 
their characteristics and implications can easily be 
proved.  “In the collective risk model, one starts from 
the following hypotheses (Ramasubramanian, 2005, 2):

1.	 The total number of claims, B, received at a time, 
is a random variable. Claims arrive at an insurance 
company in times {Ti}, valid for 0 ≤ T1 ≤ T2 ≤ .... , 
and they are claims arrival times;

2.	 Any claim, arrived in time Ti induces the payment 
of damages X i , or an amount of the claim. Sequence 
{X i} is a sequence of nonnegative, independent 
identically distributed random variables (i.i.d. 
random variables);

3.	 The claim size process {X i} and the time of 
maturity {Ti} are independent of each other. The 
process size and the claims number, {X i} and B, 
are also independent.”

The two most important processes accompanying the 
process of business insurers are the claims number 
process and the total claim amount process. As both 
processes are followed in time, they are stochastic 
processes. In addition, the claims number process, i.e. 
the number of claims incurred, is defined:

  	 (1)

and represents the number of claims received at time 
t ≥ 0, while the process of the total amount of claims 
paid is

	 ,  t ≥ 0.	 (2)

As the deterministic index n of the partial sum  
Zn = X1 + X2 +…+ Xn is replaced with a random 
variable B(t), the process 	 is a random 
process of partial sums, often referred to as the 
compounded or collective process.

MODELING THE NUMBER OF CLAIMS

The Poisson process, introduced in F. Lundberg 
(1903) as a model for the claim number process

	 , where B(t) is a random variable, has 
the central and dominant place in non-life insurance 
mathematics, in the collective risk theory in particular. 

According to the classical definition of the probability 
theory, an integer random variable Y  is said to have a 
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Poisson distribution if: 	  , for

  	 and for λ > 0. The Poisson random 
variable is used as a model for the number of phone 
calls per unit of time, the number of cars and buses 
that pass through a point per unit of time, the number 
of users who accessed a web site, the number of 
radioactive particles per unit of time, and so on. 
It has a very rare, but very useful property that  
E(Y) = var(Y) = λ.

The Poisson process monitors the occurrence of an 
event over time and the moments in which the event 
occurred, so that it has widely been applied in the 
modeling of rare events or events for which there is no 
more than one possible realization in a short period 
of time.  “The Poisson process is a random process, 
defined on a set of time, as a family of random variables
  	 , where there is set T = [0, + ∞), if the 
following is fulfilled (Ramasubramanian, 2005, 3):

(1)	 B(t) is a non-negative integer random variable 
which is true  	 which means that 
there is no claim at time t = 0;

(2)		  is a non-decreasing process, i.e. if  
0  ≤  s  <  t ,   then B(t) ≤ B(s), where B(t) - B(s) denotes 
the number of claims received in the time interval 
(s, t];

(3)		  has independent increments such 
that for 0  <  t1  <  t 2  <  ...  <  t n  <  ∞  number of 
claims received in the disjoint intervals B(t1), 
B(t2)  -  B(t1),  . . . . . . . ,  B(tn)  -  B(tn -1),  for n = 1, 2, ...  
are independent random variables;

(4)	 a probability of the arrival of a certain number of 
claims at a time interval depends only on the length 
of the interval, so that the claim number process 
has stationary increments, i.e. for 0  ≤  s  <  t  and h  > 
0 , independent random variables B(t)  -  B(s)  and 
B(t+h)  -  B(s+h)  have the same distribution;

(5)	a probability of the arrival of two or more claims 
in a particular time interval is negligibly low, i.e. 
P(B( h)  ≥  2)  = o( h), ie. P(B(t+h)  –  B(t)  ≥  2) 
= o( h),  where o( h)  is an infinitely small size 

	 with the property 	  ;

(6)	 in a very short time, a probability of the arrival 
of a request is approximately proportional to the 
length of the interval, so there is a λ  > 0 such  that 
P(B( h)=1)  =  λh  +  o( h), when  → 0. Number λ 
is the claim arrival rate.”

Although the Poisson process is not the most realistic 
process for the claim number process due to its many 
attractive and applicable properties developed and 
detected over several decades, it is a reference point 
in modeling. The limitation of the standard Poisson 
process can be reduced and the models expanded by 
various modifications of the standard Poisson process, 
analyzed in detail by J. F. C. Kingman (1993). Thus, for 
modeling the claims number process, there are two, 
much broader and more realistic, other processes that 
appear: the renewal process and the mixed Poisson 
process. 

“For the formulation and mathematical modeling of 
the claims number process, we start from the following 
assumptions, which are both natural and necessary 
(Minkowa, 2010, 31):

•	 B(t)  ≥ 0
•	 B(t)  is the integer
•	 0 ≤ s < t, then B(t)  ≤ B(s),
•	 B(t)  - B(s), for s  <  t , is the number of claims 

received in the interval (s, t].” 

The definition of the Poisson process implies that, 
for each stochastic process, which includes the claim 
number process,  	 for s  ≥  0,  k  =  0,  1,  2,  ...  
is valid:

	 (3)

or the claim number process is a homogeneous Poisson 
process, with the rate of the arrival of claim λ , where 
λ  is a constant. The proof of this result and different 
approaches performing it can be found in the works of 
many authors, such as N. L. Bowers et al (1997), C. T. 
Daykin et al (1994), S. Klugman et al (1998).

For the claim number process, from the aspect of 
insurance, the time between the arrivals of two 
consecutive claims is also important. If the arrival time 
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of the n-th claim or the waiting time of the n-th claim 
is defined by:

 	 ,  n  = 1,2 ,..,  T0 = 0, 	 (4)

it can be assigned a series of time between two 
successive claims Ai , defined by Ai  =  Ti  –  Ti-1. 
Analogously to these definitions, it follows

	 (5)

where 

	 (6)

Inductively, it can be seen that, for the Poisson process
	  with a growth rate λ, the random 
variables Ai  are independent random variables, 
exponentially distributed, with parameter λ , ie

Ai: Ɛ( λ),  so that                      ,  	               . 

As Tn  =  A1  +  A2  +  ...  +  An  is the sum of random 
variables with exponential distribution, it means that 
the arrival time of the n-th claim Tn  has a gamma 
distribution, Tn: Г(n ,λ)  (Rolski et al, 1999).

One of the key characteristics of Poisson processes  
	 is that the time between the arrivals 
of two successive claims is a random variable with 
an exponential distribution with rate λ . Another
important feature of the process                  is that
these times are independent. These two features 
provide us another way of generalizing the Poisson 
process. Specifically, we can assume that nonnegative, 
independent random variables Ai  with the same 
distribution can have whatever, either a discrete or an 
absolutely continuous distribution. This assumption 
leads us to the renewal process (Asmussen, 2000), 
which provides greater flexibility in choosing a time 
schedule for Ai . Unlike the Poisson process, where 
B(t)  has a Poisson distribution for each t, in the 
renewal process, this property does not apply, so the 
distribution for B(t)  is generally not known, and the 
determination of the probability of the event B(t)= n is 
reduced to the determination of the expectation of the 
random variable B(t)  (Panjer & Willmot, 1992). 

Also, as for the arrival time of the n-th claims  

	 , it holds that:

 	 (7)

In general, it is difficult to determine the distribution 
for Tn  but we know that, if Ai  : Ɛ(λ) then Tn: Г(n ,λ) 
and if Ai  : Poi(λ) then Tn: Poi(n ,λ). Studies by many 
scientists in the field of the renewal process (Kling & 
Goovaerts, 1993) have led to a powerful mathematical 
theory – the renewal theory, which allows you to very 
precisely determine the expected number of requests 
E(B(t))  for a large t . According to the strict law of 
large numbers, if the expectation of the time of the 
arrivals of two successive claims E(Ai) = λ -1 finally, 
then

                         	 (8)

Also, according to the elementary renewal theorem, 
the following applies:

	 (9) 

The most accurate information about the pending 
arrival times of claims is given in Blackwell’s renewal 
theorem, according to which

	 (10)

So, the expected number of renewals per interval  
(t ,  t+h], for a sufficiently large t , is proportional to the 
length of the interval and independent of t .

The basic premise that the average rate of claim 
occurrence is constant is not realistic since the claim 
arrival is often dependent on the weather. Looking at 
the parameter λ  as a function of time t , the model of 
a homogeneous Poisson process can be extended to a 
non-homogeneous Poisson process. It also starts with 
a zero, has independent increments for which it is true 
that for  0 ≤ s  < t , increment B(t)  - B(s)  is Poisson

distributed with the parameter                   Furthermo- 

re,  unction                        is a function of the mean

value of a non-homogeneous Poisson process, for 
some non-negative measurable function λ . If the 
function of the mean value is linear, i.e. µ(t)  = λ t , it 
is a homogeneous Poisson process; otherwise it is a 
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non-homogeneous one. By introducing the intensity 
function λ(t), the arrival process can be monitored and 
modeled according to seasonal trends as well. If claims 
come from heterogeneous insured groups, the arrival 
claim rate varies from one policy to another, so that 
λ(t) can be viewed as a random variable Λ(t), ∀ t  >  0.

The set  	 is a stochastic process and 
therefore, the process   	 is a double sto-
chastic Poisson process. Treating the λ as a random 
variable independent of time, this stochastic process

	 is a mixed Poisson process, which 
is an even more powerful generalization of general 
Poisson processes. The mixed Poisson process loses 
some properties of the Poisson process (increments 
are mutually dependent, the distribution for B(t)  in 
general is not Poisson’s), but it provides many more 
choices than the trajectories of the Poisson process and 
the renewal process (Grandell, 1997).

MODELING THE TOTAL CLAIM 
AMOUNT PROCESS

Analyzing the claims process is extended when the 
consideration includes not just the number of the 
claims received but the size of the claims demands 
induce, too. The sum of individual claims or the 
aggregate amount of the claims is a key problem, 
both in practice and in theoretical discussion. In fact, 
as the number of claims and the amount of the claim 
are stochastic variables, there is a double stochastic 
model of the aggregate amount of claims. Depending 
on the selection of the claim number process B, there 
are different models for the total claim amount process 
until the moment of time t:

	  , t ≥ 0	 (11)

“One of the most popular and useful models in non-life 
insurance mathematics is Cramer-Lundberg’s model 
(Cramer, 1955), which combines the claim amount 
and the arrival time, with the following assumptions 
(Mikosch, 2009, 18):

•	 The claim number process   
	 is a homogeneous Poisson process with rate

	 λ  > 0, in which claims are realized in arrival times  
0 ≤ T1  ≤ T 2  ≤ ... ;

•	 The claim received at the time Ti induces the 
payment of damage X i. Sequence {Ti} is a sequence 
of nonnegative, independent random variables 
with the same distribution function;

•	 Sequences {X i} and {Ti} are mutually independent.”

If we consider that the discounted sum i.e. the present 
value of the cumulative amount of claims in the time 
interval [0, t]:

	 (12)

where r  > 0 is the interest rate, in Cramer-Lundberg’s 
model, the expected amount necessary for settling the 
claims received in the observed time interval is

	 (13)

Insurers are generally interested in the order of the 
magnitude of Z(t), and consequently in the distribution 
functions for Z (t). Since determining the distribution 
for Z (t)  is a very complicated problem, the solution 
lies in a simulation model and in obtaining rough 
estimates of the mean and the variance of Z (t).

The expectation of the total amount of paid claims 
indicates its average size. Assuming independence 
between X i and B, if E (B (t))  and E (X1)  are final, it 
can easily be obtained that:

 	 (14)

As in Cramer-Lundberg’s model the process B(t) is a 
homogeneous Poisson process, then E (B (t))  = λ t , 
where λ  is the intensity rate of a homogeneous Poisson 
process, so that from (14) we obtain:

E(Z(t)) = λ tE(X1)	 (15)

To have more complete information about the 
distribution of Z (t) , we should combine information 
about the expectation with the variance Var(Z (t)), for 
which the following is valid (Mikosch, 2004):
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Var(Z(t)) = E(B(t))Var(X1) +
 	 + Var(B(t))(E(X1))2 	 (16)

As in Cramer-Lundberg’s model it holds that  
E(B(t))  = Var(B(t))  = λ t , we obtain:

Var(Z(t))  = λ tE(X1
2) 	 (17)

Yet another important model for the process {Z(t)  :  t 
≥ 0} was introduced by Sparre-Andersen (Andersen, 
1957) and its implications have been studied by many 
authors (Sharif & Panjer, 1995; Genest et al, 2003), 
for whom the process                         is a renewal process. 
In the renewal model, however, the determination of 
the estimates of expectations and variances is difficult 
and does not give such concrete results. We have seen 
that, according to the strict law of large numbers, if 
the expectation of the arrival times of two consecutive

claims E(Ai)  = λ -1  < ∞, then	 , when 
t→∞. 
This means that:

E(Z(t))  = λ tE(X1)(1+o(1)),  t→∞ 	 (18)

and

Var(Z(t))  =  λ t[Var(X1)  +  Var(A1) • 
	 •  λ 2(E(X1))2](1+o(1)) 	 (19)

Based on these results, we find that the expectation 
and variance asymptotically grow almost linearly as a 
function of time t . This information can be very useful 
in the practical determination of premiums sufficient 
for the settlement of losses, the size of Z(t).

PREMIUM CALCULATION PRINCIPLES

The amount of the money the insured pays the insurer, 
as a compensation for risk, is a premium. Risks and 
a premium are closely related to each other since a 
premium amount is determined by an average size 
of a risk, whose every change must be reflected in the 
amount of such a premium. Looking at a premium as 
a monetary payment from the insurer, in the context 
of the above processes, it is obvious that an insurance 
company will be operating at a loss if a premium 
is less than the expected amount of payments i.e. if  

p(t)  <  Z(t).  As we have obtained in previous 
arguments that E(Z(t))  =  λ tE(X1)(1+o(1)),  
t  →  ∞  , it is logical to determine a premium so that:

p(t)  = λ tE(X1)(1+ρ) 	 (20)

where ρ  is a positive constant and represents safety 
loading or a charge for security.

In the risk theory, there are principles which all 
premiums p(t)  should satisfy, known as the premium 
principles. To determine a premium, as the mapping of 
uncertain future losses onto their financial equivalent, 
actuaries have developed a number of methods for the 
determination of the premium principles (Albers, 1999; 
Dickson, 1991; Landsman et al, 2001), the following 
ones being basic:

•	 The principle of net premium is a basic principle, 
according to which p(t)  =  E(Z(t)). It does not 
include safety loading, because actuaries often 
assume that there is practically no risk if the 
insurer sells enough of identically distributed and 
independent policies;

•	 The principle of the expected value is based on the 
previous one, but incorporates proportional safety 
loading. According to this principle, p(t)  =  (1+ρ) 
E(Z(t))  for some ρ  > 0. This principle is generally 
used in life insurance. The application of this 
principle in non-life insurance is limited due to a 
high heterogeneity of accepted risks;

•	 The principle of variance is based on the assumption 
that p(t)  =  E(Z(t))  +  αVar(Z(t)), for some  
α  > 0, in which a safety margin is proportional to 
the variance of expected losses;

•	 The principle of  standard deviation, also based on 
the net premium principle, is often used in non-life 
insurance. According to this principle, the expected 
value of a loss must be covered by a premium 
including safety loading, which is proportional to 
the standard deviation of the expected damage, i.e.

   		  , for α > 0. Due to 
its linearity when it comes to proportional changes 
in claims, this principle is mostly used in property 
and casualty insurance.
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CONCLUSION

Insurance companies are institutions absorbing 
undesirable effects of their users’ risks. Due to the 
influence of political and legal as well as social and 
climatic factors, rapid changes in the business and 
economic environment require a comprehensive 
and dynamic risk treatment, especially in non-life 
insurance. Therefore, H. Cramer said that “the goal 
of risk theory is to provide a mathematical analysis 
of the fluctuations in the insurance business and to 
suggest various means of protection against their 
adverse effects” (Cramer, 1930, 7). The oldest approach 
to this problem is the individual-risk theory. It 
observes individual insurance policies, with different 
characteristics and risk profiles, so that the overall risk 
of doing business is obtained via the summing of all 
the claims arising from the entire portfolio of insurance 
policies. However, the claims arise randomly, so the 
risk process is a stochastic process. Thus, the collective 
risk model, based on the application of stochastic 
processes in insurance, has a very important role in 
the development of academic actuarial science. In this 
model, claims are treated aggregately, at the level of 
the portfolio as a whole. Although the risk process is 
considered as one of the simpler forms of stochastic 
processes, there is still much to do to have it applied.

The mathematical foundation has applied some 
necessary, however unrealistic, assumptions in the 
model construction and development for both the 
claim number process and the total amount of claims 
paid process. Despite their broad significance, the 
main disadvantages and limitations of theoretical 
considerations pertain to the determination of the 
distribution function which realistically reflects the 
statistics of insurers. The executed simulations of the 
proposed model use some of the known distribution 
functions, which can almost never represent insurers’ 
portfolio adequately. Today, a large number of papers 
focus on the determination of the general distribution 
functions, which will increase the correspondence of 
the obtained results with a reality (Cossette et al, 2002; 
Embrechts et al, 1997; Kaas et al, 2001). Moreover, a 
lot of work is focused on the construction of a model 
which will include inflation in determining the total 
amount of the compensation paid. In order to have it 
practically applied, which is the direction in which 

this theory is to further develop, it is necessary that 
the fact that claims are not paid at the same time 
or immediately after the arrival of a request to an 
insurance company should be taken into account. 
Also, special attention should be paid to the costs 
accompanying the treatment and settlement of claims.

The main results of the collective risk theory, which 
are presented in the paper, are indicative of a wide 
range of the modifications, modeling and simulations 
of events that may occur. The main disadvantage of 
theoretical considerations, including this paper, is 
their currently limited applicability in the practical 
business environment. However, as the range of the 
risk of non-life insurers in an increasingly turbulent 
business environment is in a constant increase, real 
consequences can no longer be predicted by using 
only business statistics. It is indisputable that the 
collective risk model represents a broad scientific field, 
engaging numerous scientists producing growingly 
concrete results when the convergence of theory and 
concrete business problems are concerned. Hence, 
the combination of visualization and stochastic 
actuarial experience is a strong mechanism to solve an 
increasingly complex insurers’ risk.
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