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In this paper, we present the problem of matching students to schools by using different matching 
mechanisms. This market is specific since public schools are free and the price mechanism cannot be 
used to determine the optimal allocation of children in schools. Therefore, it is necessary to use different 
matching algorithms that mimic the market mechanism and enable us to determine the core of the 
cooperative game. In this paper, we will determine that it is possible to apply cooperative game theory 
in matching problems. This review paper is based on illustrative examples aiming to compare matching 
algorithms in terms of the incentive compatibility, stability and efficiency of the matching. In this paper 
we will present some specific problems that may occur in matching, such as improving the quality of 
schools, favoring minority students, the limited length of the list of preferences and generating strict 
priorities from weak priorities.
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INTRODUCTION

The most important role of market prices is to 
determine the optimal allocation of resources. 
However, there are certain situations where the price 
mechanism cannot be applied, but it is still necessary 
to optimally allocate resources. One example is the 
enrolment of students in public high schools that 
are free. Therefore, it is necessary to construct an 
algorithm for matching students to schools that 
mimics the functioning of the market. The subject of 
this research is matching students to schools in the 

absence of money transfers, while the objective of the 
research is to show the possibility for the practical 
application of matching algorithms in this market.

From the methodological point of view, matching 
algorithms are based on the application of cooperative 
game theory and the mechanism design.    

The basic division of games is that into cooperative 
and non-cooperative games. In non-cooperative 
games, the player maximizes his payoff for a given 
set of rules of the game (Backović & Popović, 2012). 
In cooperative games, players make coalitions and 
the strategy is defined at the level of the coalition 
(Backović, Popović & Stamenković, 2016). In 
cooperative games, it is necessary to determine the 
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core of the game, when there is no coalition of players 
that can improve upon the allocation in the core.

The mechanism design is based on the assumption 
that players possess private information that 
they submit to the center of the mechanism. The 
mechanism should be based on the rules such 
that each player finds optimal to reveal his private 
information. This mechanism is incentive-compatible.  

The first hypothesis which matching algorithms are 
based on is that it is possible to determine the core of 
the game and the allocation that would be obtained 
in the market mechanism with money transfers. 
The second hypothesis is that it is possible to create 
incentive-compatible matching algorithms. 

This paper is a review paper that employs original 
examples to illustrate the existing results in a concise 
way. 

In the selection of the matching mechanism, it is 
necessary to take into account the fact that students 
have an incentive to express their true preferences 
and that matching is stable and efficient. 

A. Roth (2015) states that the matching mechanism 
used in New York until 2003 was very complex. 
The algorithm of immediate matching was used 
at that time, operating as follows. Students submit 
a list of three schools they want to attend. On the 
basis of the received applications, the school enrolls 
students with the highest priorities, who have listed 
that school as the first choice. If the capacity of the 
school is filled in the first round, it declines other 
applicants. In the second round, the students who 
were previously rejected apply to the school which 
is their second best choice. Schools with empty seats 
enroll applicants with the highest priority up to 
their capacity and reject other applicants. The same 
procedure is applied in the third round. Given the 
characteristics of the algorithm, it was not necessary 
for students to submit their preferences for more 
than three schools since the likelihood of their being 
enrolled in a school that was their fourth best choice 
was negligible. The students who were not enrolled 
after the third round are administratively assigned 
in the schools where there were vacancies. This 
algorithm was very inefficient since almost 30% of the 

students were enrolled in this manner. Based on the 
stated preferences, it can be determined that about 
80% of the students were enrolled in their first-choice 
schools. However, the students in this algorithm do 
not have an incentive to express their true preferences 
and the school listed as the best choice in the most 
cases represents a strategic choice. In other words, the 
school listed as the best choice represents the school 
in which the student estimates the probability of 
being admitted as the highest, and often this school 
was not his real first choice. A more detailed analysis 
of the immediate matching algorithm is given in: 
A. Abdulkardiroglu, A. Pathak and A. Roth (2005; 
2009); A. Abdulkardiroglu, A. Pathak, A. Roth and T. 
Sonmez (2005). Given all these problems, Alvin Roth 
and his colleagues have proposed the application of 
the deferred acceptance algorithm, which performs 
a temporary matching. For the application of this 
algorithm, A. Roth was awarded the Nobel Prize in 
economics in 2012, together with L. Shapely.  

The deferred acceptance algorithm was first 
considered by D. Gale and L. Shapely (1962). 
Specifying the list of preferences in the deferred 
acceptance algorithm is much simpler. The student 
does not have to consider in which school there is 
the highest probability for him to enroll because he 
will not lose a priority in the school against the other 
students with a lower priority, as is the case in the 
immediate matching algorithm. Thus, the student 
submits his true preferences in this algorithm. This 
mechanism leads to a stable matching, which means 
that it is not possible to find a school and a student 
not paired with each other and that prefer each other 
to the pair assigned to them in the algorithm. In other 
words, in a stable allocation, there is no justified envy. 
This algorithm has proven to be significantly more 
successful than the immediate matching algorithm 
and the number of the administratively enrolled 
students in New York fell by ten times. At the same 
time, there were more students enrolled in their first 
choice schools, as well as more students enrolled in 
their second choice schools, and so on. The deferred 
acceptance algorithm was selected although the top 
trading cycle introduced by D. Gale and H. Scarf (1974) 
was also considered. In this mechanism, students also 
submit their true preferences.
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School priorities are determined based on the 
distance of the student’s residence from the school 
and on the basis of whether a student has a sibling 
already attending that school. The students who live 
closer to the school have a higher priority, which is 
also the case with the students whose siblings have 
already been enrolled in that school. Priorities can be 
determined exogenously, when they are submitted to 
schools by an administrative entity, which is the case 
in Boston. In this case, there is a one-sided matching 
because students’ preferences are more important 
than exogenously determined priorities. Another 
option implies that such priorities are determined by 
schools, which is the case in New York. In this case, 
priorities can also be viewed as preferences, which 
leads us to a two-sided matching problem. In two-
sided matching, schools’ preferences are equally 
important as students’ preferences, as opposed to one-
sided matching, where only students’ preferences are 
relevant. When the problem of one-sided matching 
is concerned, no stable allocation may be Pareto 
optimal, unlike two-sided matching, where there is 
no difference between these two objectives. As far 
as incentive compatibility, or the true revelation of 
preferences, are concerned, A. Abdulkadiroğlu (2013) 
claims that the algorithm with this feature greatly 
facilitates the student’s decision on submitting his 
preference list. 

The rest of the paper is organized as follows. In the 
second part, the Boston matching algorithm, the 
deferred acceptance algorithm and the top trading 
cycle algorithm are presented. In the third part, a 
more detailed analysis of these mechanisms follows, 
from the point of view of incentive compatibility, 
stability and efficiency. The fourth part considers 
whether matching algorithms respect the improved 
ranking of the school on the preference list due to 
its increased quality, as well as its enrollment policy 
favoring minority students. In the fifth part, the 
properties of the matching algorithms are considered 
in the case of the limited length of the preference list. 
In the sixth part, the methods for constructing strict 
priorities from weak priorities are considered. The 
last section is reserved for the concluding remarks.  

MATCHING ALGHORITMS

Matching algorithms can be illustrated by way of the 
following example. Suppose there are four schools (c1, 
c2, c3, c4) with one place and four students (s1, s2, s3, s4). 
The preferences and priorities are shown in Table 1 
and Table 2.

Table 1  Priorities

 c1
 c2

 c3
 c4

s4 s1 s4 s2

s2 s2 s3 s3

s3 s3 s2 s1

s1 s4 s1 s4

Source: Author

Table 2  Preferences

 s1
 s2

 s3
 s4

c1 c4 c1 c4

c2 c3 c2 c2

c3 c2 c4 c1

c4 c1 c3 c3

Source: Author

The algorithm used in Boston is presented first, 
and we will see its main drawback. In the Boston 
algorithm, matching is immediate. Each student 
applies to the school that is his best choice. Schools 
keep students with the highest priority and reject 
others. In the next step, the rejected students apply 
to the second choice school and schools retain the 
students with the highest priority. The process is 
repeated until all students are matched to schools. 

In the previous example, in the first step, Students 
1 and 3 apply to School 1, whereas Students 2 and 4 
apply to School 4 (Table 3).
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Table 3  Boston algorithm (1)

c1 c2 c3 c4

s1, s3 s2, s4

Source: Author

School 1 retains Student 3, who has a higher priority, 
while School 4 retains Student 2. In the next step, 
Students 1 and 4 apply to School 2 (Table 4).

Table 4  Boston algorithm (2)

c1 c2 c3 c4

s3 s2

s1,s4

Source: Author

School 2 retains Student 1, who has a higher priority. 
In the next step, Student 4 applies to School 1, but 
there are no empty seats. In the last step, this student 
applies to School 3, which he is paired with. Thus, in 
the Boston algorithm, the following matching occurs 
(Table 5).

Table 5   Boston algorithm (3)

c1 c2 c3 c4

s3 s1 s4 s2

Source: Author

In the deferred acceptance algorithm, students and 
schools are temporarily matched and the school 
may reject the students with whom it is temporarily 
matched in favor of the students with a higher 
priority, who apply later. In the first step, there is the 
same situation as in the Boston algorithm (Table 6).

Table 6  Deferred acceptance algorithm  (1)

c1 c2 c3 c4

s1,s3 s2, s4

Source: Author

The same situation repeats in the second step, when 
Students 1 and 4 apply to School 2 (Table 7). 

Table 7  Deferred acceptance algorithm  (2)

c1 c2 c3 c4

s3 s2

s1, s4

Source: Author

In the third step, Student 4 applies to School 1 (Table 
8).

Table 8  Deferred acceptance algorithm  (3)

c1 c2 c3 c4

s3 s2

s1

s4

Source: Author

Now, School 1 keeps Student 4 as the best option 
and rejects Student 3, who applies in the next step in 
School 2 (Table 9). 

Table 9  Deferred acceptance algorithm  (4)

c1 c2 c3 c4

s2

s1

s4

s3

Source: Author

School 2 retains Student 1 as the best option and in 
the last step, Student 3 applies to School 3, which he is 
paired with (Table 10). 
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Table 10  Deferred acceptance algorithm  (5)

c1 c2 c3 c4

s4 s1 s3 s2

Source: Author

In the top trading cycle algorithm, each student points 
to his first choice school and each school points to the 
student with the highest priority. The cycle starts with 
the student i, who points to the school k that points 
to the student j, etc., wherein the last school points to 
the student i, who has actually started the cycle. The 
students in the cycle are matched to the schools they 
point to and are removed from the algorithm. The 
process repeats until all students have been matched.

In the first step, the situation is as follows (Figure 1):

s2

s3

s4

c2c1

c4c3

s1

Figure 1  Top trading cycle (1)

Source: Author

Based on Figure 1, we can determine that there is a 
cycle consisting of School 4 and Student 2, matched 
and removed from the algorithm. 

In the second step, the students and the schools point 
to their best option among the remaining schools and 
students (Figure 2).

Based on Figure 2, we can determine that there is 
a cycle consisting of (s1, c1, s4, c2). Thus, Student 1 is 
matched to School 1, whereas Student 4 is matched 
to School 2. In the last step, one cycle remains and 
School 3 is matched to Student 3 (Figure 3).

s3

s4

c2c1c3

s1

 

Figure 2  Top trading cycle (2)

Source: Author

s3c3

Figure 3  Top trading cycle (3)

Source: Author

Therefore, in the top trading cycle algorithm, the 
allocation is as follows (Table 11):

Table 11  Top trading cycle

c1 c2 c3 c4

s1 s4 s3 s2

Source: Author

If the top trading cycle allocation and the allocation 
in the deferred acceptance algorithm are compared to 
each other, we can see that in the first allocation, there 
is justified envy when there are the student i and the 
school j, such that the student i prefers the school j to 
the school he is assigned in in the algorithm, whereas 
in the school j the student i has a higher priority 
than the student l, who is matched to the school j in 
the algorithm. If there is justified envy, matching is 
not stable. Specifically, Student 3 prefers School 1, 
which Student 1 is enrolled in, whereas Student 3 
has a higher priority in School 1 than Student 1. On 
the other hand, we can see that the top trading cycle 
allocation is more efficient than the allocation in the 
deferred acceptance algorithm, since Students 1 and 
4 are matched to the schools that have a higher rank 
on their preference lists, and Students 2 and 3 are 
indifferent between the two allocations.
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PROPERTIES OF MATCHING ALGHORITMS 

In the previous example, we have started from the 
assumption that the students in each algorithm 
express their true preferences. However, the problem 
with the Boston algorithm is that students have an 
incentive to misrepresent their preferences and the 
student lists the school which he estimates that he has 
the highest likelihood to enroll in as the best choice 
although it may not be his real best choice. This means 
that in the Boston mechanism the Nash equilibrium 
must be determined. This can be illustrated by the 
example of two students and two schools with only 
one place (Table 12). Suppose that the payoff is 2 if the 
student is enrolled in the preferred school; otherwise, 
his payoff is 1.

Table 12  Preferences and priorities

 s1
 s2

 c1
 c2

 c1 c2 s2 s2

c2 c1 s1 s1

Source: Author

Each student has two strategies at his disposal. The 
first strategy is to truthfully submit his preferences 
and the second is to revise the order of his actual 
preferences. In its normal form, this game has two 
Nash equilibria (Table 13).

Table 13  Nash equilibria 

Student 2
c1, c2 c2, c1

Student 1
c1, c2 1 1 2 2
c2, c1 1 1 2 2

Source: Author

In the first Nash equilibrium, both students truthfully 
reveal their preferences, whereas in the second Nash 

equilibrium, Student 1 has changed the order of his 
real preferences. A more detailed consideration of 
the Nash equilibrium in the Boston algorithm can be 
found in P. Pathak and T. Sönmez (2008). 

The previous game that we have considered is a static 
game with perfect information. If players only know 
the probability distribution of the possible types of the 
other players, where the type of the player represents 
the order of his preferences, but do not know with 
certainty their preferences, the game is with imperfect 
information. H. Ergin and T. Sönmez (2006) argue 
that, in the game of imperfect information, students 
may be better off in the Boston algorithm than in the 
deferred acceptance algorithm.

In the previous discussion, we have seen that the 
main disadvantage of the Boston algorithm is that 
students do not express their true preferences. 
However, the Boston algorithm has some desirable 
properties according to F. Kojima and U. Ünver (2014). 
First, this algorithm strictly respects the stated order 
of preferences, which means that if a student is not 
matched to a school he prefers to the school which 
he is matched to, the preferred school has filled the 
places with the students who have listed that school 
in a higher place on their preference lists. Another 
advantage of the Boston algorithm is that an increase 
in the number of available places in schools may not 
make students worse off. The third advantage of this 
mechanism is that, if the number of the students who 
participate in matching decreases, the other students 
may not be in a worse position. Finally, if the student 
matched to a particular school is removed from 
the matching process, the assignment of the other 
students will remain the same.

The deferred acceptance algorithm leads to a true 
preference revelation. Another advantage of this 
algorithm is the elimination of justified envy, whereas 
the most serious drawback is that such an allocation 
is not efficient. In one-to-one matching, where the 
one side of the market makes a proposal to the other 
side, agents on the proposing side have an incentive 
to reveal their true preferences. However, the 
matching of students to schools is the case of many-
to-one matching because schools can be matched to 
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more students and each student can be matched to 
only one school. A. Roth (1985) has proved that, in 
the algorithm in which students make a proposal 
to schools, students reveal their true preferences. 
However, in the algorithm in which schools make 
a proposal to students, schools have an incentive to 
misrepresent their priorities. This can be illustrated 
by the following example of 3 schools and 4 students, 
where the first school can enroll two students and the 
second and third schools can only enroll one student. 
Suppose that the students and the schools have the 
following preferences and priorities (Table 14 and 
Table 15). 

Table 14  Priorities

 c1
 c2

 c3

s1 s1 s3

s2 s2 s1

s3 s3 s2

s4 s4 s4

q1=2 q2=1 q3=1

Source: Roth, 1985

Table 15  Preferences

 s1
 s2

 s3
 s4

c3 c2 c1 c1

c1 c1 c3 c2

c2 c3 c2 c3

Source: Roth, 1985

First, the schools are assumed to submit their true 
priorities. In this case, by applying the deferred 
acceptance algorithm, where the school makes 
a proposal, the following matching is obtained:  
µC = [(c1, (s3, s4)), (c2, s2) (c3, s1)]. However, School 1 can 

be better off by misrepresenting its priorities. Suppose 
School 1 omits Students 1 and 3 from the list of its 
priorities and submits the priority:  c1‘: s2, s4. By 
applying the deferred acceptance algorithm, in which 
schools make a proposal, the following matching is 
obtained: µC’ = [(c1, (s2, s4)), (c2, s1) (c3, s3)]. School 1 is 
better off with this strategy, because it is matched to 
Students 2 and 4 and when it submits true priorities, it 
is matched to Students 3 and 4.

In addition to the manipulation of priorities, schools 
can manipulate the capacity in order to be paired 
with a set of preferred students. The school cannot 
report a higher capacity than the real one is, but it can 
report that it has a smaller capacity. This problem has 
been extensively analyzed by T. Sönmez (1997). 

Let us now consider the following example, in which 
there are 3 students and 2 schools, where School 1 
can enroll two students, whereas School 2 can only 
enroll one student. The preferences and priorities are 
accounted for in Table 16 and Table 17. 

Table 16  Priorities

 c1
 c2

s1 s3

s2, s3 s1

s2 s2

s3

q1=2 q2=1

Source: Author

Table 17  Preferences

 s1
 s2

 s3

c2 c1 c1

c1 c2 c2

Source: Author
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If both schools report the true capacity, the 
deferred acceptance algorithm, in which 
students make a proposal, leads to the matching:  
µS (q1 = 2, q2 = 1) = ((c1, (s2, s3)), (c2, s1)). 

Suppose School 1 reports that it has a lower capacity 
and that it can only enroll one student. After this 
manipulation, the deferred acceptance algorithm 
leads to the allocation: µS (q1 = 1, q2 = 1) = ((c1, s1), (c2, 
s3)). We can see that the school is better off with such 
a manipulation because it is matched to Student 1, 
preferred to Students 2 and 3. Somehow paradoxically, 
School 2 is in a better position due to the capacity 
manipulation by School 1 since it is now paired with 
Student 3, who is preferred to Student 1.

We have seen that schools have an incentive 
to misrepresent their priorities and capacities. 
However, F. Kojima and P. Pathak (2009) argue that 
in large markets incentives for these two types of 
manipulation tend to zero.

When the top trading cycle algorithm is concerned, 
it leads to true preference revelation and an efficient 
allocation. The biggest drawback of this algorithm 
is that it does not eliminate justified envy. A more 
detailed comparison of the characteristics of these 
two algorithms can be found in: A. Abdulkardiroğlu 
and T. Sönmez (2003); A. Abdulkardiroğlu (2013).  

We have seen that the deferred acceptance algorithm 
leads to a loss of efficiency compared to the top 
trading cycle. Starting from this idea, O. Kesten 
(2010) considers whether it is possible to improve 
the efficiency of the deferred acceptance algorithm 
by changing the order of schools based on students’ 
preferences. If we return to our initial example, in 
the first step of the deferred acceptance algorithm, 
Student 3 applies to School 1, but this does not bring 
any benefit to him because in the later steps of the 
algorithm, he was rejected at this school, whereas for 
Student 1, who is rejected in the first step, School 1 
is the best choice. Thus, Student 3 creates negative 
externalities to Student 1, without any benefit for 
himself. This is precisely where O. Kesten (2010) 
sees an opportunity to improve the efficiency of the 
deferred acceptance algorithm, by deleting critical 
schools from the list of preferences of the students 

who create negative externalities without benefits for 
themselves.

For the application of this algorithm, it is necessary 
that the students who violate the matching of others 
without any benefit for themselves should accept 
the elimination of the critical schools from the list 
of their preferences. This algorithm is referred to 
as the Efficiency-Adjusted Deferred-Acceptance 
Mechanism (EADAM) and in this procedure, the loss 
of efficiency as a result of the previously described 
reason is eliminated. It is obvious that this modified 
algorithm Pareto-dominates the standard deferred 
acceptance algorithm. If all the students who create 
negative externalities consent to the elimination of 
the critical schools from the list of their preferences, 
the modified algorithm leads to the allocation that is 
Pareto-efficient.

In the previous example, School 1 should be deleted 
from the list of the preferences of Student 3, after 
which, the deferred acceptance algorithm can be 
applied. However, after this change, we can see that 
Student 3 re-creates negative externalities to the other 
students without any benefit for himself by applying 
to School 2 because he will be rejected in the next 
steps of the algorithm in this school. Therefore, it is 
necessary to delete Schools 1 and 2 from the list of 
preferences of Student 3. After these changes, which 
are presented in Table 18 and Table 19, the modified 
deferred acceptance algorithm can be applied.

Table 18  Priorities

 c1
 c2

 c3
 c4

s4 s1 s4 s2

s2 s2 s3 s3

s3 s3 s2 s1

s1 s4 s1 s4

Source: Author
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Table 19  Preferences

 s1
 s2

 s3
 s4

c1 c4 c4

c2 c3 c2

c3 c2 c4 c1

c4 c1 c3 c3

Source: Author

With these changes in the first step of the deferred 
acceptance algorithm, the situation (Table 20) is as 
follows:

Table 20  Increasing efficiency (1)

c1 c2 c3 c4

s1 s2, s3, s4

Source: Author

Students 3 and 4 are rejected in School 4 and apply to 
Schools 3 and 2 in the second step (Table 21).

Table 21  Increasing efficiency (2)

c1 c2 c3 c4

s1 s4 s3 s2

Source: Author

This allocation corresponds to the top trading cycle 
allocation. Accordingly, the modified deferred 
acceptance algorithm results in a Pareto-efficient 
allocation. 

AN INCREASE IN THE SCHOOL’S RANK ON 
THE PREFERENCE LIST DUE TO ITS HIGHER 
QUALITY AND MINORITY STUDENTS

The deferred acceptance algorithm can be analyzed 
in terms of comparative statics, i.e. with respect 
to how the matching is modified due to the fact 
that some schools improve their quality. Due to 
the improved quality of schools, students should 
increase the ranking of a particular school on the 
list of their preferences. The deferred acceptance 
algorithm respects the improvement of school quality 
if the school is matched to the student with a higher 
priority after the school increases its quality. Let us 
consider the initial example and assume that School 3 
improves its quality and that Student 3 puts School 3 
at the top of the preference list (Table 22 and Table 23).  

Table 22  Priorities

 c1
 c2

 c3
 c4

s4 s1 s4 s2

s2 s2 s3 s3

s3 s3 s2 s1

s1 s4 s1 s4

Source: Author

Table 23  Preferences

 s1
 s2

 s3
 s4

c1 c4 c3 c3

c2 c3 c1 c4

c3 c2 c2 c2

c4 c1 c4 c1

Source: Author

After this change, the application of the deferred 
acceptance algorithm generates the following 
matching (Table 24).
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Table 24  Increasing school quality

c1 c2 c3 c4

s3 s1 s4 s2

Source: Author

In this example, the improvement of the quality of 
School 3 is respected since it is matched to Student 4 
instead of Student 3. However, it is easy to construct 
an example in which the deferred acceptance 
algorithm does not take into account the improvement 
of school quality. In addition, J. W. Hatfield, F. Kojima 
and Y. Narita (2017) prove that the Boston algorithm 
and the top trading cycle do not always respect the 
improvement of school quality.

Analyzing this problem of comparative statics in 
large markets, J. W. Hatfield, F. Kojima and Y. Narita 
(2017) prove that the deferred acceptance algorithm 
respects the improvement of school quality in large 
markets. In other words, after the improvement of 
school quality, as the size of the market increases, the 
probability that the school is matched to the student 
with a lower priority decreases. However, the Boston 
and the top trading cycle algorithms do not have this 
property in large markets. Accordingly, the deferred 
acceptance algorithm provides an incentive for 
schools to improve their quality, whereas the Boston 
and the top trading cycle algorithms are deprived of 
this feature.

Students differ according to their financial situation, 
social group, race, etc. The schools that are popular 
are located in the central parts of the city inhabited 
by wealthy students. Since schools determine their 
priorities based on the distance of the student’s 
residence from school, the students who are not 
wealthy do not have a great opportunity to be 
enrolled in a popular school. For this reason, quotas 
are introduced for minority students in popular 
schools. In most cases, this policy brings minority 
students into a better position. However, F. Kojima 
(2012) argues that quotas may, in certain cases, make 
minority students worse off since majority students 
apply to other popular schools in which there is no 
quota, thereby reducing the possibility for minority 
students to enroll.

The following example illustrates the situation when 
the introduction of quotas makes minority students 
worse off. In this case, there are 3 students and 2 
schools; School 1 has one place and School 2 has 2 
places. The students’ preferences and the school’s 
priorities are shown in Table 25 and Table 26. Students 
1 and 2 are majority students and Student 3 is a 
minority student.  

Table 25  Preferences

 s1
 s2

 s3

c2 c2 c1

c1 c1 c2

Source: Author

Table 26  Priorities

 c1
 c2

s1 s3

s2 s2

s3 s1

q1 = 1 q2 = 2

Source: Author

First, we will determine the allocation by assuming 
that there is no quota for minority students. The 
deferred acceptance algorithm, in which students 
make a proposal, generates the following allocation 
(Table 27): 

Table 27  Minority students (1)

c1 c2

s3 s1, s2

Source: Author
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Now suppose that School 2 introduces a quota and 
reserves one place for the minority student 3. The 
deferred acceptance algorithm results in the following 
allocation (Table 28):

Table 28  Minority students (2)

c1 c2

s1 s2, s3

Source: Author

After the introduction of the quota, the minority 
student 3 is matched to the less preferred School 2.

In addition to introducing a quota, another way to 
favor minority students is to change the priority so 
that minority students are given a higher priority than 
majority students, while the priorities within each of 
these groups stay the same. F. Kojima (2012) proves 
that the top trading cycle can also make minority 
students worse off if a quota is introduced for these 
students or if priorities are changed in their favor. 

To reduce the problem that occurs when minority 
students are made worse off by the introduction of 
quotas, I. Hafalir, B. Yenmez and M. Yildrim (2013) 
suggest the use of flexible quotas instead of fixed 
quotas. When a fixed quota is applied, the school is 
unable to enroll majority students in the quota for 
the minority ones, even though there is no sufficient 
number of minority students to fill the quota. With 
a flexible quota, the school first enrolls minority 
students within their quota, whereas the empty places 
within this quota can be filled with majority students. 
The simulation analysis carried out by the authors 
shows that the number of minority students that are 
better off in the deferred acceptance algorithm and the 
top trading cycle with a flexible quota is significantly 
greater than the number of minority students, who 
are in a better position in the algorithms with a fixed 
quota.  

THE LIMITED LIST OF PREFERENCES

In the previous discussion, we have assumed that 
students can submit the list of their preferences of an 
unlimited length. In reality, students have a limit on 
the length of the list of preferences. In New York, for 
example, choice is limited to maximum twelve schools, 
whereas in Boston, it was impossible to specify up 
to five schools before 2006. With this assumption, 
it is no longer certain that the deferred acceptance 
algorithm and the top trading cycle will be incentive-
compatible. In other words, in these algorithms, 
with the limited length of the list of preferences, it is 
necessary to determine the Nash equilibrium, as well 
as in the Boston algorithm, without this limitation. 
Therefore, G. Haeringer and F. Klijn (2009) determine 
the Nash equilibrium in the algorithms with a limited 
list of preferences in the Boston mechanism, the 
deferred acceptance algorithm and the top trading 
cycle. An important result of this paper is that the 
Nash equilibria in the Boston algorithm and in the 
top trading cycle are independent of the length of 
preferences. On the other hand, the Nash equilibria in 
the deferred acceptance algorithm have a hierarchical 
relationship, which means that the Nash equilibrium 
in the algorithm with a shorter list of preferences is 
the Nash equilibrium in the algorithm with a longer 
list of preferences. 

The determination of the Nash equilibrium in the 
deferred acceptance algorithm can be illustrated by 
an example taken from G. Haeringer and F. Klijn 
(2009). In this example, there are 3 students and 3 
schools, and each school can accept one student. The 
length of the list of preferences is limited to 2 schools. 
Table 29 shows the preferences of the students with 
an unlimited length of the list of preferences, the 
preferences of a limited length, as well as the priorities 
of the schools. 

By applying the deferred acceptance algorithm, in 
which students make a proposal, on the basis of the 
preferences of a limited length, the allocation: [(s1, c1), 
(s2, c2), (s3, c3)] is obtained. In this allocation, there is 
justified envy since Student 2 prefers School 3 and 
has a higher priority in that school than Student 
3. Here, the result obtained differs from the earlier 
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conclusions because the Nash equilibrium allocation 
in the deferred acceptance algorithm does not have 
to be stable when the length of the preference list is 
limited.

Table 29  Limited list of preferences

 s1
 s2

 s3
s1

(2)
s2

(2)
s3

(2)
 c1

 c2
 c3

c1 c3 c3 c1 c1 c3 s3 s3 s1

c2 c1 c2 c3 c2 c1 s1 s1 s2

c3 c2 c1 s2 s2 s3

Source: Haeringer & Klijn, 2009

In order to obtain a stable matching in the deferred 
acceptance algorithm with a limited length of 
preferences, school priorities must satisfy F. Ergin’s 
acyclicity condition (2002). In the top trading cycle, a 
stable allocation is not achieved even when there is no 
limit on the length of the list of preferences. Therefore, 
in this case, school priorities must satisfy a stricter 
condition called O. Kesten’s acyclicity condition 
(2006). These conditions include two sub-conditions. 
The cyclic condition is based on the fact that school 
priorities form a cycle, such that for example Student 
1 has a higher priority in School 1 than Student 3, 
and Student 3 has a higher priority than Student 1 
in School 2. If both schools have the same priorities, 
the cyclic condition is never fulfilled. The second 
sub-condition is rarity, which implies that there are 
a significant number of students applying for places 
in schools. If each school has the number of seats 
equal to the number of students, the rarity condition 
is never met. As the number of places in a school 
decreases compared to the total number of students, 
competition for available places is more intensive. 

For the top trading cycle allocation to be efficient 
with the limited length of the list of preferences, 
it is necessary that school priorities satisfy the 
X-acyclicity, while the efficiency of the deferred 
acceptance algorithm needs a stricter requirement for 
school priorities called the strong X-acyclicity.

INDIFERENCES IN SCHOOL CHOICE

In the previous discussion, we have assumed that 
schools have strict priorities when ranking students. 
In reality, however, students belong to priority groups 
and schools are indifferent between students within 
the same group, whereas there is a strict priority 
between different groups. Matching algorithms 
cannot be applied in the case when priorities are 
not strict and it is necessary to transform weak 
priorities into strict priorities. One option for the 
indifference problem suggested by A. Erdil and H. 
Ergin (2008) is that the students who have a lower 
index within the same priority group have a higher 
priority. For example, if Students 1, 2 and 3 belong to 
the same group, Student 1 has the highest priority 
and is followed by Student 2 and student 3. Such an 
arbitrary rule does not guarantee that the allocation 
in the deferred acceptance algorithm is stable. 
Therefore, A. Erdil and H. Ergin (2008) propose a 
stable improvement cycle in order to transform an 
arbitrary matching into a stable matching. 

In addition to the previous option, for the indifference 
problem in school choice, A. Abdulkardiroğlu, P. 
Pathak and A. Roth (2009) propose single and multiple 
tie-breaking rules for the resolution of indifference. 
In Multiple tie-breaking (DA-MTB), each student is 
assigned a different lottery number in each school, 
whereas in Single tie-breaking (DA-STB), each student 
is assigned the same lottery number in each school. 
It is possible to prove that the average ranking of the 
schools which students are enrolled in is higher on 
their list of preferences in the DA-STB than in the DA-
MTB.

All of the previous methods have in common that 
students do not have any influence on the generation 
of strict priorities from weak priorities. This 
problem can further be improved by applying the 
deferred acceptance algorithm, in which students 
have the opportunity to influence the resolution 
of indifference. This algorithm was constructed by 
A. Abdulkadiroğlu, Y-K. Che and Y. Yasuda (2015) 
and it is referred to as Choice-Augmented Deferred 
Acceptance (CADA). A simplified explanation for this 
algorithm can be illustrated by the following example, 
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in which there are three students and three schools, 
and each school can only enroll one student. All the 
students belong to the same priority group, which 
means that the schools are indifferent between them. 
The students have the following cardinal utilities for 
different schools (Table 30).

Table 30  Cardinal utilities and school choice 

u(s1 ) u(s2 ) u(s3 )
c1 4 4 3
c2 1 1 2
c3 0 0 0

Source: Abdulkardiroğlu, Che & Yasuda, 2015

First, we will determine the allocation in the deferred 
acceptance algorithm, in which indifference is 
resolved such that each student receives a lottery 
number from a uniform distribution. By generating 
strict priorities in this way, each student has the same 
probability of 1/3 to enroll in any school, so that each 
student has the expected utility of 5/3. However, a 
Pareto improvement is possible in this case. Student 
3 has a higher level of utility if he is enrolled in 
School 2, which is his second best choice compared 
to Students 1 and 2, and the matching in which 
Student 3 is certainly enrolled in School 2, whereas 
Students 1 and 2 are enrolled in Schools 1 and 3, with 
the probability of 1/2, is Pareto-superior to the initial 
situation, when all students participate in the lottery. 
In the latter case, each student has an expected utility 
of 2, which is higher than the level of the expected 
utility of 5/3. In order to obtain this matching, each 
student needs to be offered a choice between certain 
enrolment in School 2 and the lottery, in which he 
is enrolled in School 1 and School 3, with an equal 
probability. Students 1 and 2 will choose the lottery, 
and Student 3 will choose safe enrolment in School 2.

The matching that we have previously described 
can be achieved with the CADA algorithm. In this 
algorithm, students submit a list of their preferences 
and one target school. In the resolution of indifference 

in a particular school, the students who have indicated 
that school as the target have a priority. Each student 
receives two lottery numbers drawn from a uniform 
distribution. The first lottery number that the student 
receives is the target lottery number, and the second 
is the regular lottery number. In the determination 
of strict priorities, the target lottery number is first 
considered, and then the regular lottery number is 
considered. Once indifferences have been resolved, 
the deferred acceptance algorithm is applied.  

Generating strict priorities based on the target and the 
regular lottery numbers can be illustrated by way of 
the example in which there are ten students and two 
schools. Students: 1, 3, 5, 7, and 9 target School 1 and 
Students: 2, 4, 6, 8, and 10 target School 2. Suppose 
that the students obtain the following target: T(I), and 
regular: R(I), lottery numbers:

T(I): 7, 1, 2, 8, 3, 4, 9, 5, 6, 10;   R(I): 7, 2, 4, 3, 5, 8, 9, 6, 10, 1.

For the students with the odd index, who have 
targeted School 1, the priority is determined based 
on the target lottery number, and the priority of the 
students in the first school is: 7, 1, 3, 9, 5. After that, the 
priority of the students who have not targeted School 
1 is determined on the basis of the regular lottery 
number, so that the complete order of the priorities in 
the first school is: 7, 1, 3, 9, 5, 2, 4, 8, 6, 10. The second 
school is targeted by the students with the even index 
and based on the target lottery number, the priority 
for these students is: 2, 8, 4, 6, 10. The priority for other 
students is determined and it is based on the regular 
lottery number, thus the complete priority order in 
the second school being: 2, 8, 4, 6, 10, 7, 3, 5, 9, 1. 

The simulation analysis conducted by A. 
Abdulkadiroğlu, Y-K. Che and Y. Yasuda (2015) 
shows that in the deferred acceptance algorithm 
with the multiple tie-breaking rule, a smaller number 
of students are enrolled in the first choice schools 
compared with the deferred acceptance algorithm 
with the single tie-breaking rule and the deferred 
acceptance algorithm with a choice. As regards the 
last two algorithms, when the number of the students 
enrolled in the first choice schools is compared, there 
is no significant difference between them. However, 
the deferred acceptance algorithm with a choice has 
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an advantage over the deferred acceptance algorithm 
with the single tie-breaking rule for the students 
enrolled in the school that is their k-th best choice, 
because these students have a higher utility in the 
CADA algorithm. 

CONCLUSION

In this paper, we have presented the most important 
results in matching students to schools by using the 
simplified examples, thus making this field closer 
to a broader audience. We have seen that there 
are some limiting factors in the application of the 
matching algorithms. First, the deferred acceptance 
algorithm is not efficient, which is its main drawback. 
The second limiting factor in the application of the 
matching algorithms is the limit of the preference 
list that students can submit, which undermines the 
stability of matching. From the practical point of view, 
students should have a possibility of submitting a 
sufficiently long list of schools so that the length of 
the preference list is not a limiting factor. In reality, 
the vast majority of students submit their preferences 
for several schools, which implies that the limit on 
the length of the preference list is not so important in 
practical application.

We have shown in the paper that cooperative game 
theory is possible to apply in matching problems. 
Moreover, we have seen that it is possible to make 
incentive-compatible mechanisms where students 
reveal their preferences.

The previous conclusions are implicative of the fact 
that the relationship between the theoretical models 
and practice is bidirectional. The absence of the price 
mechanism has imposed the need for the creation of 
the alternative rules as a substitute for the market. On 
the other hand, the existing theoretical knowledge in 
cooperative game theory and the mechanism design 
has enabled the achievement of this objective and the 
finding out of a solution to the practical problem.

The matching algorithms have proved to be very 
successful in determining the optimal allocation in 
the situations in which the market mechanism cannot 

be used for legal or ethical reasons. Beside their 
application to the matching of students to schools, 
the algorithms have been successfully applied to the 
matching of doctors to hospitals, matching organ 
donors to patients, the allocation of parking spaces or 
offices, and so on. In addition to matching students 
to schools, their especially significant application is 
that in matching organ donors to patients, where the 
incompatibility problem is greatly reduced. 

Matching students to schools is of great importance 
in the Republic of Serbia since the algorithm of 
immediate matching is still used and this paper 
proposes the improvements that could be achieved by 
applying the deferred acceptance algorithm.

It would be interesting for further research to analyze 
an increase in students’ welfare if the deferred 
acceptance algorithm is used instead of the immediate 
matching algorithm. However, based on the historical 
data, the limiting factor in this analysis is that only 
information on the stated preferences is available and 
it is known that the immediate matching algorithm 
does not induce a true preference revelation. 
Therefore, based on the historical data, it is possible 
to determine an increase in welfare only for the stated 
preferences, i.e. an increase in welfare inclusive of this 
constraint.
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