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In this paper, we present the problem of matching students to schools by using different matching
mechanisms. This market is specific since public schools are free and the price mechanism cannot be
used to determine the optimal allocation of children in schools. Therefore, it is necessary to use different
matching algorithms that mimic the market mechanism and enable us to determine the core of the
cooperative game. In this paper, we will determine that it is possible to apply cooperative game theory
in matching problems. This review paper is based on illustrative examples aiming to compare matching
algorithms in terms of the incentive compatibility, stability and efficiency of the matching. In this paper
we will present some specific problems that may occur in matching, such as improving the quality of
schools, favoring minority students, the limited length of the list of preferences and generating strict

priorities from weak priorities.
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INTRODUCTION

The most important role of market prices is to
determine the optimal allocation of resources.
However, there are certain situations where the price
mechanism cannot be applied, but it is still necessary
to optimally allocate resources. One example is the
enrolment of students in public high schools that
are free. Therefore, it is necessary to construct an
algorithm for matching students to schools that
mimics the functioning of the market. The subject of
this research is matching students to schools in the
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absence of money transfers, while the objective of the
research is to show the possibility for the practical
application of matching algorithms in this market.

From the methodological point of view, matching
algorithms are based on the application of cooperative
game theory and the mechanism design.

The basic division of games is that into cooperative
and non-cooperative games. In non-cooperative
games, the player maximizes his payoff for a given
set of rules of the game (Backovi¢ & Popovi¢, 2012).
In cooperative games, players make coalitions and
the strategy is defined at the level of the coalition
(Backovi¢, Popovi¢ & Stamenkovi¢, 2016). In
cooperative games, it is necessary to determine the
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core of the game, when there is no coalition of players
that can improve upon the allocation in the core.

The mechanism design is based on the assumption
that players possess private information that
they submit to the center of the mechanism. The
mechanism should be based on the rules such
that each player finds optimal to reveal his private
information. This mechanism is incentive-compatible.

The first hypothesis which matching algorithms are
based on is that it is possible to determine the core of
the game and the allocation that would be obtained
in the market mechanism with money transfers.
The second hypothesis is that it is possible to create
incentive-compatible matching algorithms.

This paper is a review paper that employs original
examples to illustrate the existing results in a concise
way.

In the selection of the matching mechanism, it is
necessary to take into account the fact that students
have an incentive to express their true preferences
and that matching is stable and efficient.

A. Roth (2015) states that the matching mechanism
used in New York until 2003 was very complex.
The algorithm of immediate matching was used
at that time, operating as follows. Students submit
a list of three schools they want to attend. On the
basis of the received applications, the school enrolls
students with the highest priorities, who have listed
that school as the first choice. If the capacity of the
school is filled in the first round, it declines other
applicants. In the second round, the students who
were previously rejected apply to the school which
is their second best choice. Schools with empty seats
enroll applicants with the highest priority up to
their capacity and reject other applicants. The same
procedure is applied in the third round. Given the
characteristics of the algorithm, it was not necessary
for students to submit their preferences for more
than three schools since the likelihood of their being
enrolled in a school that was their fourth best choice
was negligible. The students who were not enrolled
after the third round are administratively assigned
in the schools where there were vacancies. This
algorithm was very inefficient since almost 30% of the

students were enrolled in this manner. Based on the
stated preferences, it can be determined that about
80% of the students were enrolled in their first-choice
schools. However, the students in this algorithm do
not have an incentive to express their true preferences
and the school listed as the best choice in the most
cases represents a strategic choice. In other words, the
school listed as the best choice represents the school
in which the student estimates the probability of
being admitted as the highest, and often this school
was not his real first choice. A more detailed analysis
of the immediate matching algorithm is given in:
A. Abdulkardiroglu, A. Pathak and A. Roth (2005;
2009); A. Abdulkardiroglu, A. Pathak, A. Roth and T.
Sonmez (2005). Given all these problems, Alvin Roth
and his colleagues have proposed the application of
the deferred acceptance algorithm, which performs
a temporary matching. For the application of this
algorithm, A. Roth was awarded the Nobel Prize in
economics in 2012, together with L. Shapely.

The deferred acceptance algorithm was first
considered by D. Gale and L. Shapely (1962).
Specifying the list of preferences in the deferred
acceptance algorithm is much simpler. The student
does not have to consider in which school there is
the highest probability for him to enroll because he
will not lose a priority in the school against the other
students with a lower priority, as is the case in the
immediate matching algorithm. Thus, the student
submits his true preferences in this algorithm. This
mechanism leads to a stable matching, which means
that it is not possible to find a school and a student
not paired with each other and that prefer each other
to the pair assigned to them in the algorithm. In other
words, in a stable allocation, there is no justified envy.
This algorithm has proven to be significantly more
successful than the immediate matching algorithm
and the number of the administratively enrolled
students in New York fell by ten times. At the same
time, there were more students enrolled in their first
choice schools, as well as more students enrolled in
their second choice schools, and so on. The deferred
acceptance algorithm was selected although the top
trading cycle introduced by D. Gale and H. Scarf (1974)
was also considered. In this mechanism, students also
submit their true preferences.



D. Trifunovic, Matching students to schools 129

School priorities are determined based on the
distance of the student’s residence from the school
and on the basis of whether a student has a sibling
already attending that school. The students who live
closer to the school have a higher priority, which is
also the case with the students whose siblings have
already been enrolled in that school. Priorities can be
determined exogenously, when they are submitted to
schools by an administrative entity, which is the case
in Boston. In this case, there is a one-sided matching
because students’ preferences are more important
than exogenously determined priorities. Another
option implies that such priorities are determined by
schools, which is the case in New York. In this case,
priorities can also be viewed as preferences, which
leads us to a two-sided matching problem. In two-
sided matching, schools’ preferences are equally
important as students” preferences, as opposed to one-
sided matching, where only students” preferences are
relevant. When the problem of one-sided matching
is concerned, no stable allocation may be Pareto
optimal, unlike two-sided matching, where there is
no difference between these two objectives. As far
as incentive compatibility, or the true revelation of
preferences, are concerned, A. Abdulkadiroglu (2013)
claims that the algorithm with this feature greatly
facilitates the student’s decision on submitting his
preference list.

The rest of the paper is organized as follows. In the
second part, the Boston matching algorithm, the
deferred acceptance algorithm and the top trading
cycle algorithm are presented. In the third part, a
more detailed analysis of these mechanisms follows,
from the point of view of incentive compatibility,
stability and efficiency. The fourth part considers
whether matching algorithms respect the improved
ranking of the school on the preference list due to
its increased quality, as well as its enrollment policy
favoring minority students. In the fifth part, the
properties of the matching algorithms are considered
in the case of the limited length of the preference list.
In the sixth part, the methods for constructing strict
priorities from weak priorities are considered. The
last section is reserved for the concluding remarks.

MATCHING ALGHORITMS

Matching algorithms can be illustrated by way of the
following example. Suppose there are four schools (c,,
€, CyC,) with one place and four students (s, s,, 8y 8,)-
The preferences and priorities are shown in Table 1
and Table 2.

Table 1 Priorities

>~ >~ >~ >~
1 2 3 4
s s s s
4 1 4 2
s s s s
2 2 3 3
s 3 s 3
3 3 2 1
s s s s
1 4 1 4

Source: Author

Table 2 Preferences

s s s s
1 2 3 4
C C c c
1 4 1 4
c, c, c, c,
c C c c
3 2 4 1
c, 3 c, c,

Source: Author

The algorithm used in Boston is presented first,
and we will see its main drawback. In the Boston
algorithm, matching is immediate. Each student
applies to the school that is his best choice. Schools
keep students with the highest priority and reject
others. In the next step, the rejected students apply
to the second choice school and schools retain the
students with the highest priority. The process is
repeated until all students are matched to schools.

In the previous example, in the first step, Students
1 and 3 apply to School 1, whereas Students 2 and 4
apply to School 4 (Table 3).
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Table 3 Boston algorithm (1)

C C C C
1 2 3 4

S, S, S,S,

Source: Author

School 1 retains Student 3, who has a higher priority,
while School 4 retains Student 2. In the next step,
Students 1 and 4 apply to School 2 (Table 4).

Table 4 Boston algorithm (2)

Source: Author

School 2 retains Student 1, who has a higher priority.
In the next step, Student 4 applies to School 1, but
there are no empty seats. In the last step, this student
applies to School 3, which he is paired with. Thus, in
the Boston algorithm, the following matching occurs
(Table 5).

Table 5 Boston algorithm (3)

Source: Author

In the deferred acceptance algorithm, students and
schools are temporarily matched and the school
may reject the students with whom it is temporarily
matched in favor of the students with a higher
priority, who apply later. In the first step, there is the
same situation as in the Boston algorithm (Table 6).

Table 6 Deferred acceptance algorithm (1)

C C C C
1 2 3 4

5,5

3 2 4

Source: Author

The same situation repeats in the second step, when
Students 1 and 4 apply to School 2 (Table 7).

Table 7 Deferred acceptance algorithm (2)

Source: Author

In the third step, Student 4 applies to School 1 (Table
8).

Table 8 Deferred acceptance algorithm (3)

C1 C2 C3 C4
S S
3 2
S
1
S

Source: Author
Now, School 1 keeps Student 4 as the best option

and rejects Student 3, who applies in the next step in
School 2 (Table 9).

Table 9 Deferred acceptance algorithm (4)

C C C C
1 2 3 4
S
2
S
1
S
4
S

Source: Author

School 2 retains Student 1 as the best option and in
the last step, Student 3 applies to School 3, which he is
paired with (Table 10).
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Table 10 Deferred acceptance algorithm (5)

Source: Author

In the top trading cycle algorithm, each student points
to his first choice school and each school points to the
student with the highest priority. The cycle starts with
the student i, who points to the school k that points
to the student j, etc.,, wherein the last school points to
the student i, who has actually started the cycle. The
students in the cycle are matched to the schools they
point to and are removed from the algorithm. The
process repeats until all students have been matched.

In the first step, the situation is as follows (Figure 1):
S
1 \
/ d
2
53 - c1
/ S

2
S /
T
C
C 4
3
Figure 1 Top trading cycle (1)

Source: Author

Based on Figure 1, we can determine that there is a
cycle consisting of School 4 and Student 2, matched
and removed from the algorithm.

In the second step, the students and the schools point
to their best option among the remaining schools and
students (Figure 2).

Based on Figure 2, we can determine that there is
a cycle consisting of (s, c, s, c,). Thus, Student 1 is
matched to School 1, whereas Student 4 is matched
to School 2. In the last step, one cycle remains and
School 3 is matched to Student 3 (Figure 3).

Figure 2 Top trading cycle (2)
Source: Author

( «<—»§
3 3

Figure 3 Top trading cycle (3)

Source: Author

Therefore, in the top trading cycle algorithm, the
allocation is as follows (Table 11):

Table 11 Top trading cycle

Source: Author

If the top trading cycle allocation and the allocation
in the deferred acceptance algorithm are compared to
each other, we can see that in the first allocation, there
is justified envy when there are the student i and the
school j, such that the student 7 prefers the school j to
the school he is assigned in in the algorithm, whereas
in the school j the student i has a higher priority
than the student /, who is matched to the school j in
the algorithm. If there is justified envy, matching is
not stable. Specifically, Student 3 prefers School 1,
which Student 1 is enrolled in, whereas Student 3
has a higher priority in School 1 than Student 1. On
the other hand, we can see that the top trading cycle
allocation is more efficient than the allocation in the
deferred acceptance algorithm, since Students 1 and
4 are matched to the schools that have a higher rank
on their preference lists, and Students 2 and 3 are
indifferent between the two allocations.
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PROPERTIES OF MATCHING ALGHORITMS

In the previous example, we have started from the
assumption that the students in each algorithm
express their true preferences. However, the problem
with the Boston algorithm is that students have an
incentive to misrepresent their preferences and the
student lists the school which he estimates that he has
the highest likelihood to enroll in as the best choice
although it may not be his real best choice. This means
that in the Boston mechanism the Nash equilibrium
must be determined. This can be illustrated by the
example of two students and two schools with only
one place (Table 12). Suppose that the payoff is 2 if the
student is enrolled in the preferred school; otherwise,
his payoff is 1.

Table 12 Preferences and priorities

~s s >~ >~
1 2 1 2
C C 3 s
1 2 2 2
c C 3 3

Source: Author

Each student has two strategies at his disposal. The
first strategy is to truthfully submit his preferences
and the second is to revise the order of his actual
preferences. In its normal form, this game has two
Nash equilibria (Table 13).

Table 13 Nash equilibria

Student 2
C1’ cz Cz’ C1
¢ C 11 22
Student 1
¢, C 11 22

Source: Author

In the first Nash equilibrium, both students truthfully
reveal their preferences, whereas in the second Nash

equilibrium, Student 1 has changed the order of his
real preferences. A more detailed consideration of
the Nash equilibrium in the Boston algorithm can be
found in P. Pathak and T. Sonmez (2008).

The previous game that we have considered is a static
game with perfect information. If players only know
the probability distribution of the possible types of the
other players, where the type of the player represents
the order of his preferences, but do not know with
certainty their preferences, the game is with imperfect
information. H. Ergin and T. Sonmez (2006) argue
that, in the game of imperfect information, students
may be better off in the Boston algorithm than in the
deferred acceptance algorithm.

In the previous discussion, we have seen that the
main disadvantage of the Boston algorithm is that
students do not express their true preferences.
However, the Boston algorithm has some desirable
properties according to F. Kojima and U. Unver (2014).
First, this algorithm strictly respects the stated order
of preferences, which means that if a student is not
matched to a school he prefers to the school which
he is matched to, the preferred school has filled the
places with the students who have listed that school
in a higher place on their preference lists. Another
advantage of the Boston algorithm is that an increase
in the number of available places in schools may not
make students worse off. The third advantage of this
mechanism is that, if the number of the students who
participate in matching decreases, the other students
may not be in a worse position. Finally, if the student
matched to a particular school is removed from
the matching process, the assignment of the other
students will remain the same.

The deferred acceptance algorithm leads to a true
preference revelation. Another advantage of this
algorithm is the elimination of justified envy, whereas
the most serious drawback is that such an allocation
is not efficient. In one-to-one matching, where the
one side of the market makes a proposal to the other
side, agents on the proposing side have an incentive
to reveal their true preferences. However, the
matching of students to schools is the case of many-
to-one matching because schools can be matched to
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more students and each student can be matched to
only one school. A. Roth (1985) has proved that, in
the algorithm in which students make a proposal
to schools, students reveal their true preferences.
However, in the algorithm in which schools make
a proposal to students, schools have an incentive to
misrepresent their priorities. This can be illustrated
by the following example of 3 schools and 4 students,
where the first school can enroll two students and the
second and third schools can only enroll one student.
Suppose that the students and the schools have the
following preferences and priorities (Table 14 and
Table 15).

Table 14 Priorities

>~ >~ >~
1 2 3
S S S
1 1 3
S S S
2 2 1
S S S
3 3 2
S S S
4 4 4
g,=2 q,=1 q,=1
Source: Roth, 1985
Table 15 Preferences
s ~s s ~s
1 2 3 4
C C C C
3 2 1 1
C C C C
1 1 3 2
C C C C
2 3 2 3

Source: Roth, 1985

First, the schools are assumed to submit their true
priorities. In this case, by applying the deferred
acceptance algorithm, where the school makes
a proposal, the following matching is obtained:
uc=lkc, s, s,)), (c, s) (c, s)I. However, School 1 can

be better off by misrepresenting its priorities. Suppose
School 1 omits Students 1 and 3 from the list of its
priorities and submits the priority: >'cl’: s, s, By
applying the deferred acceptance algorithm, in which
schools make a proposal, the following matching is
obtained: u“=[(c, (s, s,), (c, s,) (c, s,)I. School 1 is
better off with this strategy, because it is matched to
Students 2 and 4 and when it submits true priorities, it
is matched to Students 3 and 4.

In addition to the manipulation of priorities, schools
can manipulate the capacity in order to be paired
with a set of preferred students. The school cannot
report a higher capacity than the real one is, but it can
report that it has a smaller capacity. This problem has
been extensively analyzed by T. Sonmez (1997).

Let us now consider the following example, in which
there are 3 students and 2 schools, where School 1
can enroll two students, whereas School 2 can only
enroll one student. The preferences and priorities are
accounted for in Table 16 and Table 17.

Table 16 Priorities

> ~c
1 2
51 S3
S S S
2 3 1
S S
2 2
3
q1:2 q2:1

Table 17 Preferences

s s s
1 2 3
c C C
2 1 1
c c c

Source: Author
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If both schools report the true capacity, the
deferred  acceptance  algorithm, in  which
students make a proposal, leads to the matching:
W@=20,=1=(, 6, 5)) @ 5))

Suppose School 1 reports that it has a lower capacity
and that it can only enroll one student. After this
manipulation, the deferred acceptance algorithm
leads to the allocation: 1i* (g,= 1, q,= 1) = ((c,, s, (c,
s,)). We can see that the school is better off with such
a manipulation because it is matched to Student 1,
preferred to Students 2 and 3. Somehow paradoxically,
School 2 is in a better position due to the capacity
manipulation by School 1 since it is now paired with
Student 3, who is preferred to Student 1.

We have seen that schools have an incentive
to misrepresent their priorities and capacities.
However, F. Kojima and P. Pathak (2009) argue that
in large markets incentives for these two types of
manipulation tend to zero.

When the top trading cycle algorithm is concerned,
it leads to true preference revelation and an efficient
allocation. The biggest drawback of this algorithm
is that it does not eliminate justified envy. A more
detailed comparison of the characteristics of these
two algorithms can be found in: A. Abdulkardiroglu
and T. Sonmez (2003); A. Abdulkardiroglu (2013).

We have seen that the deferred acceptance algorithm
leads to a loss of efficiency compared to the top
trading cycle. Starting from this idea, O. Kesten
(2010) considers whether it is possible to improve
the efficiency of the deferred acceptance algorithm
by changing the order of schools based on students’
preferences. If we return to our initial example, in
the first step of the deferred acceptance algorithm,
Student 3 applies to School 1, but this does not bring
any benefit to him because in the later steps of the
algorithm, he was rejected at this school, whereas for
Student 1, who is rejected in the first step, School 1
is the best choice. Thus, Student 3 creates negative
externalities to Student 1, without any benefit for
himself. This is precisely where O. Kesten (2010)
sees an opportunity to improve the efficiency of the
deferred acceptance algorithm, by deleting critical
schools from the list of preferences of the students

who create negative externalities without benefits for
themselves.

For the application of this algorithm, it is necessary
that the students who violate the matching of others
without any benefit for themselves should accept
the elimination of the critical schools from the list
of their preferences. This algorithm is referred to
as the Efficiency-Adjusted Deferred-Acceptance
Mechanism (EADAM) and in this procedure, the loss
of efficiency as a result of the previously described
reason is eliminated. It is obvious that this modified
algorithm Pareto-dominates the standard deferred
acceptance algorithm. If all the students who create
negative externalities consent to the elimination of
the critical schools from the list of their preferences,
the modified algorithm leads to the allocation that is
Pareto-efficient.

In the previous example, School 1 should be deleted
from the list of the preferences of Student 3, after
which, the deferred acceptance algorithm can be
applied. However, after this change, we can see that
Student 3 re-creates negative externalities to the other
students without any benefit for himself by applying
to School 2 because he will be rejected in the next
steps of the algorithm in this school. Therefore, it is
necessary to delete Schools 1 and 2 from the list of
preferences of Student 3. After these changes, which
are presented in Table 18 and Table 19, the modified
deferred acceptance algorithm can be applied.

Table 18 Priorities

~c ~c ~c ~c
1 2 3 4
s s s s
4 1 4 2
3 s S s
2 2 3 3
s s s s
3 3 2 1
S s 3 S

N
EN

Source: Author
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Table 19 Preferences

s >~ >~ s
1 2 3 4
C c C
1 4 4
c, c, c,
c C C C
3 2 4 1
c, C c c,

Source: Author

With these changes in the first step of the deferred
acceptance algorithm, the situation (Table 20) is as

follows:
Table 20 Increasing efficiency (1)
C C C C
1 2 3 4
s, SySyS,

Source: Author

Students 3 and 4 are rejected in School 4 and apply to
Schools 3 and 2 in the second step (Table 21).

Table 21 Increasing efficiency (2)

Source: Author

This allocation corresponds to the top trading cycle
the modified deferred
acceptance algorithm results in a Pareto-efficient

allocation. ~ Accordingly,

allocation.

AN INCREASE IN THE SCHOOL'S RANK ON
THE PREFERENCE LIST DUE TO ITS HIGHER
QUALITY AND MINORITY STUDENTS

The deferred acceptance algorithm can be analyzed
in terms of comparative statics, ie. with respect
to how the matching is modified due to the fact
that some schools improve their quality. Due to
the improved quality of schools, students should
increase the ranking of a particular school on the
list of their preferences. The deferred acceptance
algorithm respects the improvement of school quality
if the school is matched to the student with a higher
priority after the school increases its quality. Let us
consider the initial example and assume that School 3
improves its quality and that Student 3 puts School 3
at the top of the preference list (Table 22 and Table 23).

Table 22 Priorities

>~ >~ >~ >~
1 2 3 4
s s s s
4 1 4 2
s s 3 s
2 2 3 3
s s s s
3 3 2 1
3 s 3 3
1 4 1 4

Source: Author

Table 23 Preferences

s s s s

1 2 3 4
c c c c
1 4 3 3
C C C C
2 3 1 4
C c c c
3 2 2 2
c c c c

4

EN

Source: Author

After this change, the application of the deferred
acceptance algorithm generates the following
matching (Table 24).
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Table 24 Increasing school quality

1 2 3 4

S S S S
3 1 4 2

Source: Author

In this example, the improvement of the quality of
School 3 is respected since it is matched to Student 4
instead of Student 3. However, it is easy to construct
an example in which the deferred acceptance
algorithm does not take into account the improvement
of school quality. In addition, J. W. Hatfield, F. Kojima
and Y. Narita (2017) prove that the Boston algorithm
and the top trading cycle do not always respect the
improvement of school quality.

Analyzing this problem of comparative statics in
large markets, J. W. Hatfield, F. Kojima and Y. Narita
(2017) prove that the deferred acceptance algorithm
respects the improvement of school quality in large
markets. In other words, after the improvement of
school quality, as the size of the market increases, the
probability that the school is matched to the student
with a lower priority decreases. However, the Boston
and the top trading cycle algorithms do not have this
property in large markets. Accordingly, the deferred
acceptance algorithm provides an incentive for
schools to improve their quality, whereas the Boston
and the top trading cycle algorithms are deprived of
this feature.

Students differ according to their financial situation,
social group, race, etc. The schools that are popular
are located in the central parts of the city inhabited
by wealthy students. Since schools determine their
priorities based on the distance of the student’s
residence from school, the students who are not
wealthy do not have a great opportunity to be
enrolled in a popular school. For this reason, quotas
are introduced for minority students in popular
schools. In most cases, this policy brings minority
students into a better position. However, F. Kojima
(2012) argues that quotas may, in certain cases, make
minority students worse off since majority students
apply to other popular schools in which there is no
quota, thereby reducing the possibility for minority
students to enroll.

The following example illustrates the situation when
the introduction of quotas makes minority students
worse off. In this case, there are 3 students and 2
schools; School 1 has one place and School 2 has 2
places. The students’ preferences and the school’s
priorities are shown in Table 25 and Table 26. Students
1 and 2 are majority students and Student 3 is a
minority student.

Table 25 Preferences

s s s
1 2 3
C C C
2 2 1
C C C
1 1 2
Source: Author
Table 26 Priorities
balle beale
1 2
S S
1 3
S S
2 2
S S
3 1
q1 =1 qz =2

Source: Author

First, we will determine the allocation by assuming
that there is no quota for minority students. The
deferred acceptance algorithm, in which students
make a proposal, generates the following allocation
(Table 27):

Table 27 Minority students (1)

C C

1 2

s 5,5

3 2

Source: Author
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Now suppose that School 2 introduces a quota and
reserves one place for the minority student 3. The
deferred acceptance algorithm results in the following
allocation (Table 28):

Table 28 Minority students (2)

C C

1 2

S S,S

1 Y73

Source: Author

After the introduction of the quota, the minority
student 3 is matched to the less preferred School 2.

In addition to introducing a quota, another way to
favor minority students is to change the priority so
that minority students are given a higher priority than
majority students, while the priorities within each of
these groups stay the same. F. Kojima (2012) proves
that the top trading cycle can also make minority
students worse off if a quota is introduced for these
students or if priorities are changed in their favor.

To reduce the problem that occurs when minority
students are made worse off by the introduction of
quotas, L. Hafalir, B. Yenmez and M. Yildrim (2013)
suggest the use of flexible quotas instead of fixed
quotas. When a fixed quota is applied, the school is
unable to enroll majority students in the quota for
the minority ones, even though there is no sufficient
number of minority students to fill the quota. With
a flexible quota, the school first enrolls minority
students within their quota, whereas the empty places
within this quota can be filled with majority students.
The simulation analysis carried out by the authors
shows that the number of minority students that are
better off in the deferred acceptance algorithm and the
top trading cycle with a flexible quota is significantly
greater than the number of minority students, who
are in a better position in the algorithms with a fixed
quota.

THE LIMITED LIST OF PREFERENCES

In the previous discussion, we have assumed that
students can submit the list of their preferences of an
unlimited length. In reality, students have a limit on
the length of the list of preferences. In New York, for
example, choice is limited to maximum twelve schools,
whereas in Boston, it was impossible to specify up
to five schools before 2006. With this assumption,
it is no longer certain that the deferred acceptance
algorithm and the top trading cycle will be incentive-
compatible. In other words, in these algorithms,
with the limited length of the list of preferences, it is
necessary to determine the Nash equilibrium, as well
as in the Boston algorithm, without this limitation.
Therefore, G. Haeringer and F. Klijn (2009) determine
the Nash equilibrium in the algorithms with a limited
list of preferences in the Boston mechanism, the
deferred acceptance algorithm and the top trading
cycle. An important result of this paper is that the
Nash equilibria in the Boston algorithm and in the
top trading cycle are independent of the length of
preferences. On the other hand, the Nash equilibria in
the deferred acceptance algorithm have a hierarchical
relationship, which means that the Nash equilibrium
in the algorithm with a shorter list of preferences is
the Nash equilibrium in the algorithm with a longer
list of preferences.

The determination of the Nash equilibrium in the
deferred acceptance algorithm can be illustrated by
an example taken from G. Haeringer and F. Klijn
(2009). In this example, there are 3 students and 3
schools, and each school can accept one student. The
length of the list of preferences is limited to 2 schools.
Table 29 shows the preferences of the students with
an unlimited length of the list of preferences, the
preferences of a limited length, as well as the priorities
of the schools.

By applying the deferred acceptance algorithm, in
which students make a proposal, on the basis of the
preferences of a limited length, the allocation: [(s,, c)),
(s, ¢,) (s, c;)] is obtained. In this allocation, there is
justified envy since Student 2 prefers School 3 and
has a higher priority in that school than Student
3. Here, the result obtained differs from the earlier
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conclusions because the Nash equilibrium allocation
in the deferred acceptance algorithm does not have
to be stable when the length of the preference list is
limited.

Table 29 Limited list of preferences

@ &) ¢
s s s s s sl e e e
1 2 3 1 2 3 1 2 3

Source: Haeringer & Klijn, 2009

In order to obtain a stable matching in the deferred
acceptance algorithm with a limited length of
preferences, school priorities must satisfy F. Ergin’s
acyclicity condition (2002). In the top trading cycle, a
stable allocation is not achieved even when there is no
limit on the length of the list of preferences. Therefore,
in this case, school priorities must satisfy a stricter
condition called O. Kesten’s acyclicity condition
(2006). These conditions include two sub-conditions.
The cyclic condition is based on the fact that school
priorities form a cycle, such that for example Student
1 has a higher priority in School 1 than Student 3,
and Student 3 has a higher priority than Student 1
in School 2. If both schools have the same priorities,
the cyclic condition is never fulfilled. The second
sub-condition is rarity, which implies that there are
a significant number of students applying for places
in schools. If each school has the number of seats
equal to the number of students, the rarity condition
is never met. As the number of places in a school
decreases compared to the total number of students,
competition for available places is more intensive.

For the top trading cycle allocation to be efficient
with the limited length of the list of preferences,
it is necessary that school priorities satisfy the
X-acyclicity, while the efficiency of the deferred
acceptance algorithm needs a stricter requirement for
school priorities called the strong X-acyclicity.

INDIFERENCES IN SCHOOL CHOICE

In the previous discussion, we have assumed that
schools have strict priorities when ranking students.
In reality, however, students belong to priority groups
and schools are indifferent between students within
the same group, whereas there is a strict priority
between different groups. Matching algorithms
cannot be applied in the case when priorities are
not strict and it is necessary to transform weak
priorities into strict priorities. One option for the
indifference problem suggested by A. Erdil and H.
Ergin (2008) is that the students who have a lower
index within the same priority group have a higher
priority. For example, if Students 1, 2 and 3 belong to
the same group, Student 1 has the highest priority
and is followed by Student 2 and student 3. Such an
arbitrary rule does not guarantee that the allocation
in the deferred acceptance algorithm is stable.
Therefore, A. Erdil and H. Ergin (2008) propose a
stable improvement cycle in order to transform an
arbitrary matching into a stable matching.

In addition to the previous option, for the indifference
problem in school choice, A. Abdulkardiroglu, P.
Pathak and A. Roth (2009) propose single and multiple
tie-breaking rules for the resolution of indifference.
In Multiple tie-breaking (DA-MTB), each student is
assigned a different lottery number in each school,
whereas in Single tie-breaking (DA-STB), each student
is assigned the same lottery number in each school.
It is possible to prove that the average ranking of the
schools which students are enrolled in is higher on
their list of preferences in the DA-STB than in the DA-
MTB.

All of the previous methods have in common that
students do not have any influence on the generation
of strict priorities from weak priorities. This
problem can further be improved by applying the
deferred acceptance algorithm, in which students
have the opportunity to influence the resolution
of indifference. This algorithm was constructed by
A. Abdulkadiroglu, Y-K. Che and Y. Yasuda (2015)
and it is referred to as Choice-Augmented Deferred
Acceptance (CADA). A simplified explanation for this
algorithm can be illustrated by the following example,
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in which there are three students and three schools,
and each school can only enroll one student. All the
students belong to the same priority group, which
means that the schools are indifferent between them.
The students have the following cardinal utilities for
different schools (Table 30).

Table 30 Cardinal utilities and school choice

us,) u(s,) u(s,)

c, 4 4 3
C 1 1 2
2

C 0 0 0

Source: Abdulkardiroglu, Che & Yasuda, 2015

First, we will determine the allocation in the deferred
acceptance algorithm, in which indifference is
resolved such that each student receives a lottery
number from a uniform distribution. By generating
strict priorities in this way, each student has the same
probability of 1/3 to enroll in any school, so that each
student has the expected utility of 5/3. However, a
Pareto improvement is possible in this case. Student
3 has a higher level of utility if he is enrolled in
School 2, which is his second best choice compared
to Students 1 and 2, and the matching in which
Student 3 is certainly enrolled in School 2, whereas
Students 1 and 2 are enrolled in Schools 1 and 3, with
the probability of 1/2, is Pareto-superior to the initial
situation, when all students participate in the lottery.
In the latter case, each student has an expected utility
of 2, which is higher than the level of the expected
utility of 5/3. In order to obtain this matching, each
student needs to be offered a choice between certain
enrolment in School 2 and the lottery, in which he
is enrolled in School 1 and School 3, with an equal
probability. Students 1 and 2 will choose the lottery,
and Student 3 will choose safe enrolment in School 2.

The matching that we have previously described
can be achieved with the CADA algorithm. In this
algorithm, students submit a list of their preferences
and one target school. In the resolution of indifference

in a particular school, the students who have indicated
that school as the target have a priority. Each student
receives two lottery numbers drawn from a uniform
distribution. The first lottery number that the student
receives is the target lottery number, and the second
is the regular lottery number. In the determination
of strict priorities, the target lottery number is first
considered, and then the regular lottery number is
considered. Once indifferences have been resolved,
the deferred acceptance algorithm is applied.

Generating strict priorities based on the target and the
regular lottery numbers can be illustrated by way of
the example in which there are ten students and two
schools. Students: 1, 3, 5, 7, and 9 target School 1 and
Students: 2, 4, 6, 8, and 10 target School 2. Suppose
that the students obtain the following target: T(I), and
regular: R(I), lottery numbers:

T(1):7,1,2,83,4,9,56,10; R(1):7,2,4,3,58,9 6,10, 1.

For the students with the odd index, who have
targeted School 1, the priority is determined based
on the target lottery number, and the priority of the
students in the first school is: 7, 1, 3, 9, 5. After that, the
priority of the students who have not targeted School
1 is determined on the basis of the regular lottery
number, so that the complete order of the priorities in
the first schoolis: 7,1, 3,9, 5, 2, 4, 8, 6, 10. The second
school is targeted by the students with the even index
and based on the target lottery number, the priority
for these students is: 2, 8, 4, 6, 10. The priority for other
students is determined and it is based on the regular
lottery number, thus the complete priority order in
the second school being: 2, 8, 4, 6,10, 7,3, 5,9, 1.

The simulation analysis conducted by A.
Abdulkadiroglu, Y-K. Che and Y. Yasuda (2015)
shows that in the deferred acceptance algorithm
with the multiple tie-breaking rule, a smaller number
of students are enrolled in the first choice schools
compared with the deferred acceptance algorithm
with the single tie-breaking rule and the deferred
acceptance algorithm with a choice. As regards the
last two algorithms, when the number of the students
enrolled in the first choice schools is compared, there
is no significant difference between them. However,
the deferred acceptance algorithm with a choice has
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an advantage over the deferred acceptance algorithm
with the single tie-breaking rule for the students
enrolled in the school that is their k-th best choice,
because these students have a higher utility in the
CADA algorithm.

CONCLUSION

In this paper, we have presented the most important
results in matching students to schools by using the
simplified examples, thus making this field closer
to a broader audience. We have seen that there
are some limiting factors in the application of the
matching algorithms. First, the deferred acceptance
algorithm is not efficient, which is its main drawback.
The second limiting factor in the application of the
matching algorithms is the limit of the preference
list that students can submit, which undermines the
stability of matching. From the practical point of view,
students should have a possibility of submitting a
sufficiently long list of schools so that the length of
the preference list is not a limiting factor. In reality,
the vast majority of students submit their preferences
for several schools, which implies that the limit on
the length of the preference list is not so important in
practical application.

We have shown in the paper that cooperative game
theory is possible to apply in matching problems.
Moreover, we have seen that it is possible to make
incentive-compatible mechanisms where students
reveal their preferences.

The previous conclusions are implicative of the fact
that the relationship between the theoretical models
and practice is bidirectional. The absence of the price
mechanism has imposed the need for the creation of
the alternative rules as a substitute for the market. On
the other hand, the existing theoretical knowledge in
cooperative game theory and the mechanism design
has enabled the achievement of this objective and the
finding out of a solution to the practical problem.

The matching algorithms have proved to be very
successful in determining the optimal allocation in
the situations in which the market mechanism cannot

be used for legal or ethical reasons. Beside their
application to the matching of students to schools,
the algorithms have been successfully applied to the
matching of doctors to hospitals, matching organ
donors to patients, the allocation of parking spaces or
offices, and so on. In addition to matching students
to schools, their especially significant application is
that in matching organ donors to patients, where the
incompatibility problem is greatly reduced.

Matching students to schools is of great importance
in the Republic of Serbia since the algorithm of
immediate matching is still used and this paper
proposes the improvements that could be achieved by
applying the deferred acceptance algorithm.

It would be interesting for further research to analyze
an increase in students’ welfare if the deferred
acceptance algorithm is used instead of the immediate
matching algorithm. However, based on the historical
data, the limiting factor in this analysis is that only
information on the stated preferences is available and
it is known that the immediate matching algorithm
does not induce a true preference revelation.
Therefore, based on the historical data, it is possible
to determine an increase in welfare only for the stated
preferences, i.e. an increase in welfare inclusive of this
constraint.
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